Skip to main content
Log in

Identification of genes expressed during the self-incompatibility response in perennial ryegrass (Lolium perenne L.)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Self-incompatibility (SI) in Lolium perenne is controlled gametophytically by the SZ two-locus system. S and Z loci mapped to L. perenne linkage groups 1 and 2, respectively, with their corresponding putative-syntenic regions on rice chromosome 5 (R5) and R4. None of the gene products of S and Z have yet been identified. SI cDNA libraries were developed to enrich for SI expressed genes in L. perenne. Transcripts were identified from the SI libraries that were orthologous to sequences on rice R4 and R5. These represent potential SI candidate genes. Altogether ten expressed SI candidate genes were identified. A rapid increase in gene expression within two minutes after pollen-stigma contact was revealed, reaching a maximum between 2 and 10 min. The potential involvement of these genes in the SI reactions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CBL:

Calcineurin B-like

GO:

Gene ontology

GSI:

Gametophytic self-incompatibility

ILGI:

International lolium genome initiative

LG:

Linkage group

MAPK:

Mitogen-activated protein kinase

PCD:

Programmed cell death

PR:

Pathogenesis-related

SCR:

S-Locus cysteine-rich protein

SCP:

Sperm-coating glycoprotein

SI:

Self-incompatibility

SLF:

S-Locus F-box protein

SRK:

S-Locus receptor protein kinase

SSH:

Suppression subtractive hybridization

SSI:

Sporophytic self-incompatibility

STS:

Sequence tagged site

TDF:

Transcribed derived fragment

UBP:

Ubiquitin-specific protease

References

  • Albach DC, Meudt HM, Oxelman B (2005) Piecing together the “new”. Plantaginaceae. Am J Bot 92:297–315. doi:10.3732/ajb.92.2.297

    Article  Google Scholar 

  • Anderson MA, Cornish EC, Mau SL, Williams EG, Hoggart R, Atkinson A et al (1986) Cloning of cDNA for a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature 321:38–44. doi:10.1038/321038a0

    Article  CAS  Google Scholar 

  • Armstead IP, Turner LB, King IP, Cairns AJ, Humphreys MO (2002) Comparison and integration of genetic maps generated from F-2 and BC1-type mapping populations in perennial ryegrass. Plant Breed 121:501–507. doi:10.1046/j.1439-0523.2002.00742.x

    Article  CAS  Google Scholar 

  • Armstead IP, Skøt L, Tuner LB, Skøt K, Donnison IS, Humphreys MO et al (2005) Identification of perennial ryegrass [Lolium perenne (L.)] and meadow fescue [Festuca pratensis (Huds.)] candidate orthologous sequences to the rice Hd1(Se1) and barley HvCO1 CONSTANS-like genes through comparative mapping and microsynteny. New Phytol 167:239–247. doi:10.1111/j.1469-8137.2005.01392.x

    Article  CAS  PubMed  Google Scholar 

  • Armstead I, Donnison I, Aubry S, Harper J, Hörtensteiner S, James C et al (2006) From crop to model to crop: Identifying the genetic basis of the staygreen mutation in the Lolium/Festuca forage and amenity grasses. New Phytol 172:592–597. doi:10.1111/j.1469-8137.2006.01922.x

    Article  PubMed  Google Scholar 

  • Armstead IP, Turner B, Marshall AH, Humphreys MO, King IP, Thorogood D (2008) Identifying genetic components controlling fertility in the outcrossing grass species perennial ryegrass (Lolium perenne) by quantitative trait loci analysis and comparative genetics. New Phytol 178:559–571. doi:10.1111/j.1469-8137.2008.02413.x

    Article  CAS  PubMed  Google Scholar 

  • Assmann SM (1993) Signal-transduction in guard-cells. Annu Rev Cell Biol 9:345–375. doi:10.1146/annurev.cb.09.110193.002021

    Article  CAS  PubMed  Google Scholar 

  • Baumann U, Juttner J, Bian XY, Langridge P (2000) Self-incompatibility in the grasses. Ann Bot (Lond) 85:203–209. doi:10.1006/anbo.1999.1056

    Article  CAS  Google Scholar 

  • Bian XY, Friedrich A, Bai JR, Baumann U, Hayman DL, Barker SJ et al (2004) High-resolution mapping of the S and Z loci of Phalaris coerulescens. Genome 47:918–930. doi:10.1139/g04-017

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu HM, Cheung AY (2002) The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14:2175–2190. doi:10.1105/tpc.003038

    Article  CAS  PubMed  Google Scholar 

  • Cheng JH, Han ZH, Xu XF, Li TZ (2006) Isolation and identification of the pollen-expressed polymorphic F-box genes linked to the S-locus in apple (Malus × domestica). Sex Plant Reprod 19:175–183. doi:10.1007/s00497-006-0034-4

    Article  CAS  Google Scholar 

  • Cheung AY, Chen CYH, Tao LZ, Andreyeva T, Twell D, Wu HM (2003) Regulation of pollen tube growth by Rac-like GTPases. J Exp Bot 54:73–81. doi:10.1093/jxb/54.380.73

    Article  CAS  PubMed  Google Scholar 

  • Cornish MA, Hayward MD, Lawrence MJ (1979) Self-incompatibility in ryegrass. 1. Genetic control in diploid Lolium perenne L. Heredity 43:95–106. doi:10.1038/hdy.1979.63

    Article  Google Scholar 

  • Cosgrove DJ (1998) Cell wall loosening by expansins. Plant Physiol 118:333–339. doi:10.1104/pp.118.2.333

    Article  CAS  PubMed  Google Scholar 

  • de Graaf BHJ, Rudd JJ, Wheeler MJ, Perry RM, Bell EM, Osman K et al (2006) Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen. Nature 444:490–493

    Article  PubMed  CAS  Google Scholar 

  • deNettancourt D (1977) Incompatibility in angiosperms. Springer, Berlin

    Google Scholar 

  • East EM (1940) The distribution of self-sterility in the flowering plants. Proc Am Philos Soc 82:449–518

    Google Scholar 

  • Elleman CJ, Frankin-Tong V, Dickinson HG (1992) Pollination in species with dry stigmas—the nature of the early stigmatic response and the pathway taken by pollen tubes. New Phytol 121:413–424

    Article  Google Scholar 

  • Entani T, Iwano M, Shiba H, Che FS, Isogai A, Takayama S (2003) Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume: identification of a pollen-expressed F-box gene with allelic diversity. Genes. Cells 8:203–213

    Article  CAS  PubMed  Google Scholar 

  • Fernández C, Szyperski T, Bruyère T, Ramage P, Mösinger E, Wüthrich K (1997) NMR solution structure of the pathogenesis-related protein P14a. J Mol Biol 266:576–593

    Article  PubMed  Google Scholar 

  • Franklin-Tong VE (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11:727–738

    Article  CAS  PubMed  Google Scholar 

  • Franklin-Tong VE, Franklin FCH (1992) Gametophytic self-incompatibility in Papaver rhoeas L. Sex Plant Reprod 5:1–7

    Article  Google Scholar 

  • Franklin-Tong VE, Holdaway-Clarke TL, Straatman KR, Kunkel JG, Hepler PK (2002) Involvement of extracellular calcium influx in the self-incompatibility response of Papaver rhoeas. Plant J 29:333–345

    Article  CAS  PubMed  Google Scholar 

  • Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K et al (2001) CED-12/ELMO, a novel member of the crkII/dock180/rac pathway, is required for phagocytosis and cell migration. Cell 107:27–41

    Article  CAS  PubMed  Google Scholar 

  • Hackauf B, Wehling P (2005) Approaching the self-incompatibility locus Z in rye (Secale cereale L.) via comparative genetics. Theor Appl Genet 110:832–845

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (1999) Plant protein serine threonine kinases: classification and functions. Annu Rev Plant Biol 50:97–131

    Article  CAS  Google Scholar 

  • Hauck NR, Yamane H, Tao R, Iezzoni AF (2006) Accumulation of nonfunctional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus. Genetics 172:1191–1198

    Article  PubMed  Google Scholar 

  • Hayman DL (1956) The genetic control of incompatibility in Phalaris coerulescens DESF. Aust J Biol Sci 9:321–331

    Google Scholar 

  • Hayman DL, Richter J (1992) Mutations affecting self-incompatibility in Phalaris coerulescens DESF (Poaceae). Heredity 68:495–503

    Google Scholar 

  • Hedrich R, Becker D (1994) Green circuits—the potential of plant specific ion channels. Plant Mol Biol 26:1637–1650

    Article  CAS  PubMed  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison J (1982) Pollen-stigma interaction and cross-incompatibility in the grasses. Science 215:1358–1364

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1982) The pollen-stigma interaction in the grasses. 4. An interpretation of the self-incompatibility response. Acta Bot Neerl 31:429–439

    Google Scholar 

  • Huang SJ, Blanchoin L, Chaudhry F, Franklin-Tong VE, Staiger CJ (2004) A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments. J Biol Chem 279:23364–23375

    Article  CAS  PubMed  Google Scholar 

  • Iwano M, Shiba H, Matoba K, Miwa T, Funato M, Entani T et al (2007) Actin dynamics in papilla cells of Brassica rapa during self- and cross- pollination. Plant Physiol 144:72–81

    Article  CAS  PubMed  Google Scholar 

  • Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO et al (2002) An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295

    Article  CAS  PubMed  Google Scholar 

  • Kaothien P, Ok SH, Shuai B, Wengier D, Cotter R, Kelley D et al (2005) Kinase partner protein interacts with the LePRK1 and LePRK2 receptor kinases and plays a role in polarized pollen tube growth. Plant J 42:492–503

    Article  CAS  PubMed  Google Scholar 

  • Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C et al (1999) Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145:317–330

    Article  CAS  PubMed  Google Scholar 

  • Kusaba M, Dwyer K, Hendershot J, Vrebalov J, Nasrallah JB, Nasrallah ME (2001) Self-incompatibility in the genus Arabidopsis: characterization of the S locus in the outcrossing A. lyrata and its autogamous relative A. thaliana. Plant Cell 13:627–643

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Ma WS, Han B, Liang LZ, Zhang YS, Hong GF et al (2002) An F-box gene linked to the self-incompatibility (S) locus of Antirrhinum is expressed specifically in pollen and tapetum. Plant Mol Biol 50:29–42

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Huang S, Kao T (1994) S-proteins control rejection of incompatible pollen in Petunia inflata. Nature 367:560–563

    Article  CAS  PubMed  Google Scholar 

  • Li XM, Nield J, Hayman D, Langridge P (1994) Cloning a putative self-incompatibility gene from the pollen of the grass Phalaris coerulescens. Plant Cell 6:1923–1932

    Article  CAS  PubMed  Google Scholar 

  • Li XM, Paech N, Nield J, Hayman D, Langridge P (1997) Self-incompatibility in the grasses: evolutionary relationship of the S gene from Phalaris coerulescens to homologous sequences in other grasses. Plant Mol Biol 34:223–232

    Article  CAS  PubMed  Google Scholar 

  • Li S, Samaj J, Franklin-Tong VE (2007) A mitogen-activated protein kinase signals to programmed cell death induced by self-incompatibility in Papaver pollen. Plant Physiol 145:236–245

    Article  CAS  PubMed  Google Scholar 

  • Lipsick JS (1996) One billion years of Myb. Oncogene 13:223–235

    CAS  PubMed  Google Scholar 

  • Lundqvist A (1954) Studies on self-sterility in rye, Secale cereale L. Hereditas 40:278–294

    Article  Google Scholar 

  • Lundqvist A (1961) A rapid method for the analysis of incompatibilities in grasses. Hereditas 47:705–707

    Article  Google Scholar 

  • McClure BA, Franklin-Tong V (2006) Gametophytic self-incompatibility: understanding the cellular mechanisms involved in “self” pollen tube inhibition. Planta 224:233–245

    Article  CAS  PubMed  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell-wall extension in plants. Plant Cell 4:1425–1433

    Article  CAS  PubMed  Google Scholar 

  • Mendelsohn AR, Brent R (1999) Protein biochemistry—protein interaction methods—toward an endgame. Science 284:1948–1950

    Article  CAS  PubMed  Google Scholar 

  • Milne TJ, Abbenante G, Tyndall JDA, Halliday J, Lewis RJ (2003) Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily. J Biol Chem 278:31105–31110

    Article  CAS  PubMed  Google Scholar 

  • Murfett J, Atherton TL, Mou B, Gasser CS, McClure BA (1994) S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature 367:563–566

    Article  CAS  PubMed  Google Scholar 

  • Nasrallah JB (2002) Recognition and rejection of self in plant reproduction. Science 296:305–308

    Article  CAS  PubMed  Google Scholar 

  • Nasrallah JB, Yu SM, Nasrallah ME (1988) Self-incompatibility genes of Brassica oleraceae: expression, isolation and structure. Proc Natl Acad Sci USA 85:5551–5555

    Article  CAS  PubMed  Google Scholar 

  • Pezzotti M, Feron R, Mariani C (2002) Pollination modulates expression of the PPAL gene, a pistil-specific β-expansin. Plant Mol Biol 49:187–197

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  Google Scholar 

  • Poulter NS, Vatovec S, Franklin-Tong VE (2008) Microtubules are a target for self-incompatibility signalling in Papaver pollen. Plant Physiol 146:1358–1367

    Article  CAS  PubMed  Google Scholar 

  • Rebrikov DV, Desai SM, Siebert PD, Lukyanov SA (2004) Suppression subtractive hybridization. In: Shimkets RA (eds) Gene expression profiling: Methods and protocols. In: Walker JM (eds) Methods in molecular biology, vol 258. Humana press, Totowa, pp 34–107

  • Reddy VS, Reddy ASN (2004) Proteomics of calcium-signaling components in plants. Phytochemistry 65:1745–1776

    Article  CAS  PubMed  Google Scholar 

  • Rose A, Meier I, Wienand U (1999) The tomato I-box binding factor LeMYBI is a member of a novel class of Myb-like proteins. Plant J 20:641–652

    Article  CAS  PubMed  Google Scholar 

  • Rudd JJ, Franklin-Tong VE (2003) Signals and targets of the self-incompatibility response in pollen of Papaver rhoeas. J Exp Bot 54:141–148

    Article  CAS  PubMed  Google Scholar 

  • Rudd JJ, Osman K, Franklin FC, Franklin-Tong VE (2003) Activation of a putative MAP kinase in pollen is stimulated by the self-incompatibility (SI) response. FEBS Lett 547:223–227

    Article  CAS  PubMed  Google Scholar 

  • Sanabria N, Goring D, Nürnberger T, Dubery I (2008) Self/nonself perception and recognition mechanisms in plants: a comparison of self-incompatibility and innate immunity. New Phytol 178:503–514

    Article  CAS  PubMed  Google Scholar 

  • Sassa H, Kakui H, Miyamoto M, Suzuki Y, Hanada T, Ushijima K et al (2007) S locus F-box brothers: multiple and pollen-specific F-box genes with S haplotype-specific polymorphisms in apple and Japanese pear. Genetics 175:1869–1881

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Rose T, Jentsch TJ (1997) Transmembrane topology of a CLC chloride channel. Proc Natl Acad Sci USA 94:7633–7638

    Article  CAS  PubMed  Google Scholar 

  • Schopfer CR, Nasrallah ME, Nasrallah JB (1999) The male determinant of self-incompatibility in Brassica. Science 286:1697–1700

    Article  CAS  PubMed  Google Scholar 

  • Schroeder JI (1995) Anion channels as central mechanisms for signal-transduction in guard-cells and putative functions in roots for plant-soil interactions. Plant Mol Biol 28:353–361

    Article  CAS  PubMed  Google Scholar 

  • Schuler GD, Altschul SF, Lipman DJ (1991) A workbench for multiple alignment construction and analysis. Proteins 9:180–190

    Article  CAS  PubMed  Google Scholar 

  • Shcherban TY, Shi J, Durachko DM, Guiltinan MJ, McQueen-Mason SJ, Shieh M et al (1995) Molecular-cloning and sequence-analysis of expansins—a highly conserved, multigene family of proteins that mediate cell-wall extension in plants. Proc Natl Acad Sci USA 92:9245–9249

    Article  CAS  PubMed  Google Scholar 

  • Sijacic P, Wang X, Skirpan AL, Wang Y, Dowd PE, McCubbin AG et al (2004) Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429:302–305

    Article  CAS  PubMed  Google Scholar 

  • Sim S, Chang T, Curley J, Warnke SE, Barker RE, Jung G (2005) Chromosomal rearrangements differentiating the ryegrass genome from the Triticeae, oat, and rice genomes using common heterologous RFLP probes. Theor Appl Genet 110:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Stein JC, Dixit R, Nasrallah ME, Nasrallah JB (1996) SRK, the stigma-specific S locus receptor kinase of Brassica, is targeted to the plasma membrane in transgenic tobacco. Plant Cell 8:429–445

    Article  CAS  PubMed  Google Scholar 

  • Swanson R, Clark T, Preuss D (2005) Expression profiling of Arabidopsis stigma tissue identifies stigma-specific genes. Sex Plant Reprod 18:163–171

    Article  CAS  Google Scholar 

  • Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K (2000) The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403:913–916

    Article  CAS  PubMed  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Biol 48:461–491

    Article  CAS  Google Scholar 

  • Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309

    Article  CAS  PubMed  Google Scholar 

  • Thorogood D, Hayward MD (1991) The genetic control of self-compatibility in an inbred line of Lolium perenne L. Heredity 67:175–181

    Article  Google Scholar 

  • Thorogood D, Kaiser WJ, Jones JG, Armstead I (2002) Self-incompatibility in ryegrass 12. Genotyping and mapping the S and Z loci of Lolium perenne L. Heredity 88:385–390

    Article  CAS  PubMed  Google Scholar 

  • Thorogood D, Armstead IP, Turner LB, Humphreys MO, Hayward MD (2005) Identification and mode of action of self-compatibility loci in Lolium perenne L. Heredity 94:356–363

    Article  CAS  PubMed  Google Scholar 

  • Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15:771–781

    Article  CAS  PubMed  Google Scholar 

  • Van Daele I, Van Bockstaele E, Martens C, Roldán-Ruiz I (2007) Identification of transcribed derived fragments involved in self-incompatibility in perennial ryegrass (Lolium perenne L.) using cDNA-AFLP. Euphytica. doi: 10.1007/s10681-007-9580-6

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • Van Ooijen JW, Vorrips RE (2001) Join Map® 3.1, software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Voylokov AV, Korzun V, Börner A (1998) Mapping of three self-fertility mutations in rye (Secale cereale L.) using RFLP, isozyme and morphological markers. Theor Appl Genet 97:147–153

    Article  CAS  Google Scholar 

  • Wehling P, Hackauf B, Wricke G (1994) Phosphorylation of pollen proteins in relation to self-incompatibility in rye (Secale cereale L). Sex Plant Reprod 7:67–75

    Article  Google Scholar 

  • Wheeler MJ, Franklin-Tong VE, Franklin FCH (2001) The molecular and genetic basis of pollen-pistil interactions. New Phytol 151:565–584

    Article  CAS  Google Scholar 

  • Winter E, Ponting CP (2002) TRAM, LAG1 and CLN8: members of a novel family of lipid-sensing domains? Trends Biochem Sci 27:381–383

    Article  CAS  PubMed  Google Scholar 

  • Wolters-Arts M, Lush WM, Mariani C (1998) Lipids are required for directional pollen-tube growth. Nature 392:818–821

    Article  CAS  PubMed  Google Scholar 

  • Xu XD, Soutto M, Xie Q, Servick S, Subramanian C, von Arnim AG et al (2007) Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proc Natl Acad Sci USA 104:10264–10269

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Carpenter R, Dickinson HG, Coen ES (1996) Origin of allelic diversity in Antirrhinum S locus RNases. Plant Cell 8:805–814

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Thorogood D, Armstead I, Barth S (2008) How far are we from unravelling self-incompatibility in grasses? New Phytol 179:740–753

    Article  CAS  Google Scholar 

  • Zonia L, Cordeiro S, Tupý J, Feijó JA (2002) Oscillatory chloride efflux at the pollen tube apex has a role in growth and cell volume regulation and is targeted by inositol 3, 4, 5, 6-tetrakisphosphate. Plant Cell 14:2233–2249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

BY was funded by a Teagasc Walsh Fellowship. We acknowledge core funding contributions of Teagasc and financial contributions of the National Development Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Barth.

Additional information

Accession Number Sequence data from this article can be found in the EMBL/GenBank data libraries under accession numbers AM991118, AM991119, AM991120, AM991121, AM991122, AM991123, AM991124, AM991125, AM991126 and AM991127.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 5002 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, B., Thorogood, D., Armstead, I.P. et al. Identification of genes expressed during the self-incompatibility response in perennial ryegrass (Lolium perenne L.). Plant Mol Biol 70, 709–723 (2009). https://doi.org/10.1007/s11103-009-9501-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9501-2

Keywords

Navigation