Skip to main content
Log in

Development of rapid microwave-mediated and low-temperature bacterial transformations

  • Original Article
  • Published:
Journal of Chemical Biology

Abstract

The introduction of exogenous DNA into Escherichia coli is a cornerstone of molecular biology. Herein, we investigate two new mechanisms for bacterial transformation involving either the use of microwave irradiation or a freeze–thaw protocol in liquid nitrogen. Ultimately, both methods afforded successful transfer of plasmid DNA into bacterial cells, with the freeze–thaw technique yielding efficiencies of ~105. More importantly, both techniques effectively eliminated the need for the preparation of competent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aune TE, Aachmann FL (2010) Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed. Appl Microbiol Biotechnol 85:1301–1313

    Article  CAS  Google Scholar 

  2. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  3. Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69:2110–2114

    Article  CAS  Google Scholar 

  4. Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162

    Article  CAS  Google Scholar 

  5. Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86:2172–2175

    Article  CAS  Google Scholar 

  6. Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  CAS  Google Scholar 

  7. Norgard MV, Keem K, Monahan JJ (1978) Factors affecting the transformation of Escherichia coli strain chi1776 by pBR322 plasmid DNA. Gene 3:279–292

    Article  CAS  Google Scholar 

  8. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    CAS  Google Scholar 

  9. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  Google Scholar 

  10. Collins J, Leadbeater N (2007) Microwave energy: a versatile tool for the biosciences. Org Biomol Chem 5:1141–1150

    Article  CAS  Google Scholar 

  11. Fermér C, Nilsson P, Larhed M (2003) Microwave-assisted high-speed PCR. Eur J Pharm Sci 18:129–132

    Article  Google Scholar 

  12. Orrling K, Nilsson P, Gullberg M, Larhed M (2004) An efficient method to perform milliliter-scale PCR utilizing highly controlled microwave thermocycling. Chem Commun (Camb) 790–791.

  13. Edwards W, Young D, Deiters A (2009) The effect of microwave irradiation on DNA hybridization. Org Biomol Chem 7:2506–2508

    Article  CAS  Google Scholar 

  14. Young DD, Nichols J, Kelly RM, Deiters A (2008) Microwave activation of enzymatic catalysis. J Am Chem Soc 130:10048–10049

    Article  CAS  Google Scholar 

  15. Leadbeater NE, Stencel LM, Wood EC (2007) Probing the effects of microwave irradiation on enzyme-catalysed organic transformations: the case of lipase-catalysed transesterification reactions. Org Biomol Chem 5:1052–1055

    Article  CAS  Google Scholar 

  16. Fregel R, Rodríguez V, Cabrera VM (2008) Microwave improved Escherichia coli transformation. Lett Appl Microbiol 46:498–499

    Article  CAS  Google Scholar 

  17. Roychoudhury A, Basu S, Sengupta DN (2009) Analysis of comparative efficiencies of different transformation methods of E. coli using two common plasmid vectors. Indian J Biochem Biophys 46:395–400

    CAS  Google Scholar 

  18. Dityatkin SY, Lisovskaya KV, Panzhava NN, Iliashenko BN (1972) Frozen-thawed bacteria as recipients of isolated coliphage DNA. Biochim Biophys Acta 281:319–323

    Article  CAS  Google Scholar 

  19. Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol Biol 343:43–53

    CAS  Google Scholar 

  20. Weigel D, Glazebrook, J Transformation of Agrobacterium using the freeze-thaw method. CSH Protoc 2006, 2006(7).

  21. Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16:664–668, 670

    CAS  Google Scholar 

  22. Takahashi R, Valeika SR, Glass KW (1992) A simple method of plasmid transformation of E. coli by rapid freezing. Biotechnique 13:711–712, 715

    CAS  Google Scholar 

  23. Merrick MJ, Gibbins JR, Postgate JR (1987) A rapid and efficient method for plasmid transformation of Klebsiella pneumoniae and Escherichia coli. J Gen Microbiol 133:2053–2057

    CAS  Google Scholar 

  24. Shokolenko IN, Alexeyev MF (1995) Transformation of Escherichia coli TG1 and Klebsiella oxytoca VN13 by freezing-thawing procedure. Biotechniques 18:596–598

    CAS  Google Scholar 

  25. Wards B, Collins D (1996) Electroporation at elevated temperatures substantially improves transformation efficiency of slow-growing mycobacteria. FEMS Microbiol Lett 145:101–105

    Article  CAS  Google Scholar 

  26. Jacobs WR, Tuckman M, Bloom BR (1987) Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327:532–535

    Article  CAS  Google Scholar 

  27. Naser SA, McCarthy CM, Smith GB, Tupponce AK (1993) Low temperature protocol for efficient transformation of Mycobacterium smegmatis spheroplasts. Curr Microbiol 27:153–156

    Article  CAS  Google Scholar 

  28. Zainuddin ZF, Kunze ZM, Dale JW (1989) Transformation of Mycobacterium smegmatis with Escherichia coli plasmids carrying a selectable resistance marker. Mol Microbiol 3:29–34

    Article  CAS  Google Scholar 

  29. Zainuddin ZF, Kunze ZM, Dale JW (1989) Transformation of Mycobacterium smegmatis with E. coli plasmids. Acta Leprol 7(1):212–216

    Google Scholar 

  30. Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4:1911–1919

    Article  CAS  Google Scholar 

  31. Kaps I, Ehrt S, Seeber S, Schnappinger D et al (2001) Energy transfer between fluorescent proteins using a co-expression system in Mycobacterium smegmatis. Gene 278:115–124

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the College of William & Mary for the funding, including a research award for D.D.Y. D.D.Y would like to thank the Jeffress Memorial Trust for the financial support. Additionally, J.C.M would like to thank the Howard Hughes Medical Institute for a research scholarship. Finally we would like to thank Dr. Mark Forsyth for providing the culture of M. smegmatis used in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas D. Young.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 201 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripp, V.T., Maza, J.C. & Young, D.D. Development of rapid microwave-mediated and low-temperature bacterial transformations. J Chem Biol 6, 135–140 (2013). https://doi.org/10.1007/s12154-013-0095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-013-0095-4

Keywords

Navigation