Skip to main content
Log in

Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Methods for transfer of exogenous DNA into cells are essential for genetics and molecular biology, and the lack of effective methods hampers research on many different species of bacteria which have shown to be particularly recalcitrant to transformation. This review presents the progress on the development of methods for artificial transformation of bacteria with emphasis on different methodologies and the range of bacteria that can be transformed. The methods' strengths and weaknesses are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aachmann FL, Aune TEV (2009) Use of cyclodextrin and its derivatives for increased transformation efficiency of competent bacterial cells. App Microbiol Biotech 83:589–596

    CAS  Google Scholar 

  • Aagaard C, Leviev I, Aravalli RN, Forterre P, Prieur D, Garrett RA (1996) General vectors for archaeal hyperthermophiles: strategies based on a mobile intron and a plasmid. FEMS Microbiol Rev 18:93–104

    CAS  Google Scholar 

  • Accetto T, Peterka M, Avgustin G (2005) Type II restriction modification systems of Prevotella bryantii TC1–1 and Prevotella ruminicola 23 strains and their effect on the efficiency of DNA introduction via electroporation. FEMS Microbiol Lett 247:177–183

    CAS  Google Scholar 

  • Allen SP, Blaschek HP (1988) Electroporation-induced transformation of intact cells of Clostridium perfringens. Appl Environ Microbiol 54:2322–2324

    CAS  Google Scholar 

  • Aravalli RN, Garrett RA (1997) Shuttle vectors for hyperthermophilic archaea. Extremophiles 1:183–191

    CAS  Google Scholar 

  • Assad-Garcia JS, Bonnin-Jusserand M, Garmyn D, Guzzo J, Alexandre H, Grandvalet C (2008) An improved protocol for electroporation of Oenococcus oeni ATCC BAA-1163 using ethanol as immediate membrane fluidizing agent. Lett Appl Microbiol 47:333–338

    CAS  Google Scholar 

  • Atrazhev AM, Elliott JF (1996) Simplified desalting of ligation reactions immediately prior to electroporation into E. coli. BioTechniques 21:1024–1024

    CAS  Google Scholar 

  • Avery OT, MacLeod CM, McCarthy RL (1944) Studies on the chemical nature of the substance inducing transformation of Pneumococcal types. J Exp Med 79:137–158

    CAS  Google Scholar 

  • Bagdasarian M, Timmis KN (1981) Host–vector systems for gene-cloning in Pseudomonas. Curr Top Microbiol 96:47–67

    Google Scholar 

  • Bao SP, Thrall BD, Miller DL (1997) Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 23:953–959

    CAS  Google Scholar 

  • Bechet M, Pheulpin P, Flint HJ, Martin J, Dubourguier HC (1993) Transfer of hybrid plasmids based on the replicon Prr17 from Escherichia coli to bacteroides and prevotella strains. J Appl Bacteriol 74:542–548

    CAS  Google Scholar 

  • Belliveau BH, Trevors JT (1989) Transformation of Bacillus cereus vegetative cells by electroporation. Appl Environ Microbiol 55:1649–1652

    CAS  Google Scholar 

  • Benzinger R, Kleber I, Huskey R (1978) Transfection of Escherichia coli spheroplasts—infectious lambda prophage DNA. J Gen Virol 39:531–535

    CAS  Google Scholar 

  • Binet R, Maurelli AT (2009) Transformation and isolation of allelic exchange mutants of Chlamydia psittaci using recombinant DNA introduced by electroporation. Proc Natl Acad Sci USA 106:292–297

    CAS  Google Scholar 

  • Blaschek HP, Klacik MA (1984) Role of DNase in recovery of plasmid DNA from Clostridium perfringens. App Env Mircobiol 48:178–181

    CAS  Google Scholar 

  • Bonnassie S, Burini JF, Oreglia J, Trautwetter A, Patte JC, Sicard AM (1990) Transfer of plasmid DNA to Brevibacterium lactofermentum by electrotransformation. J Gen Microbiol 136:2107–2112

    CAS  Google Scholar 

  • Bozkir A, Saka OM (2004) Chitosan-DNA nanoparticles: effect on DNA integrity, bacterial transformation and transfection efficiency. J Drug Target 12:281–288

    CAS  Google Scholar 

  • Brigidi P, De Rossi E, Bertarini ML, Riccardi G, Matteuzzi D (1990) Genetic transformation of intact cells of Bacillus subtilis by electroporation. FEMS Microbiol Lett 55:135–138

    CAS  Google Scholar 

  • Broetto L, Cecagno R, Sant’anna FH, Weber S, Schrank IS (2006) Stable transformation of Chromobacterium violaceum with a broad-host-range plasmid. Appl Microbiol Biotechnol 71:450–454

    CAS  Google Scholar 

  • Brown BJ, Carlton BC (1980) Plasmid-mediated transformation in Bacillus megaterium. J Bacteriol 142:508–512

    CAS  Google Scholar 

  • Brown MGM, Weston A, Saunders JR, Humphreys GO (1979) Transformation of Escherichia coli-C600 by plasmid DNA at different phases of growth. FEMS Microbiol Lett 5:219–222

    CAS  Google Scholar 

  • Buckley ND, Vadeboncoeur C, LeBlanc DJ, Lee LN, Frenette M (1999) An effective strategy, applicable to Streptococcus salivarius and related bacteria, to enhance or confer electroporation competence. Appl Environ Microbiol 65:3800–3804

    CAS  Google Scholar 

  • Calvin NM, Hanawalt PC (1988) High-efficiency transformation of bacterial cells by electroporation. J Bacteriol 170:2796–2801

    CAS  Google Scholar 

  • Canvin JR, Andrew PW, Boulnois GJ, Mitchell TJ (1994) Eletrotransformation of Streptococcus pneumoniae. Lett Appl Microbiol 18:35–38

    Google Scholar 

  • Charlebois RL, Lam WL, Cline SW, Doolittle WF (1987) Characterization of pHV2 from Halobacterium volcanii and its use in demonstrating transformation of an archaebacterium. Proc Natl Acad Sci USA 84:8530–8534

    CAS  Google Scholar 

  • Chassy BM, Flickinger JL (1987) Transformation of Lactobacillus casei by electroporation. Fems Microbiol Lett 44:173–177

    CAS  Google Scholar 

  • Chen W, Ohmiya K, Shimizu S (1986) Protoplast formation and regeneration of dehydrodivanillin-degrading strains of Fusobacterium varium and Enterococcus fæcium. App Env Mircobiol 52:612–616

    CAS  Google Scholar 

  • Chen I, Christie PJ, Dubnau D (2005) The ins and outs of DNA transfer in bacteria. Science 310:1456–1460

    CAS  Google Scholar 

  • Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Compu 44:5–14

    CAS  Google Scholar 

  • Chen Q, Fischer JR, Benoit VM, Dufour NP, Youderian P, Leong JM (2008) In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56. J Bacteriol 190:7885–7891

    CAS  Google Scholar 

  • Chi B, Chauhan S, Kuramitsu H (1999) Development of a system for expressing heterologous genes in the oral spirochete Treponema denticola and its use in expression of the Treponema pallidum flaA gene. Infect Immun 67:3653–3656

    CAS  Google Scholar 

  • Chu-Ky S, Tourdot-Marechal R, Marechal P-A, Guzzo J (2005) Combined, cold, acid, ethanol shocks in Oenococcus oeni: effects on membrane fluidity and cell viability. Biochim Biophys Acta 1717:118–124

    CAS  Google Scholar 

  • Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA 86:2172–2175

    CAS  Google Scholar 

  • Claverys JP, Martin B (2003) Bacterial ‘competence’ genes: signatures of active transformation, or only remnants? Trends Microbiol 11:161–165

    CAS  Google Scholar 

  • Cline SW, Doolittle WF (1987) Efficieant transfection of the Archaebacterium halobium. J Bacteriol 169:1341–1344

    CAS  Google Scholar 

  • Cline SW, Schalkwyk LC, Doolittle WF (1989) Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. J Bacteriol 171:4987–4991

    CAS  Google Scholar 

  • Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    CAS  Google Scholar 

  • Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70:3240–3244

    CAS  Google Scholar 

  • Cosloy SD, Oishi M (1973) Natture of transformation process in Escherichia coli K12. Mol Gen Genet 124:1–10

    CAS  Google Scholar 

  • Cruz-Rodz AL, Gilmore MS (1990) High efficiency introduction of plasmid DNA into glycine treated Enterococcus faecalis by electroporation. Mol Gen Genet 224:152–154

    CAS  Google Scholar 

  • Davis TO, Henderson I, Brehm JK, Minton NP (2000) Development of a transformation and gene reporter system for group II, non-proteolytic Clostridium botulinum type B strains. J Mol Microbiol Biotechnol 2:59–69

    CAS  Google Scholar 

  • Dityatkin SYA, Iliyashenko BN (1979) Plasmid transformation of frozen–thawed bacteria. Genetika 15:220–225

    CAS  Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    CAS  Google Scholar 

  • Dunny GM, Lee LN, LeBlanc DJ (1991) Improved electroporation and cloning vector system for gram-positive bacteria. Appl Environ Microbiol 57:1194–1201

    CAS  Google Scholar 

  • Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182

    CAS  Google Scholar 

  • Edwards RA, Helm RA, Maloy SR (1999) Increasing DNA transfer efficiency by temporary inactivation of host restriction. BioTechniques 26:892–894

    CAS  Google Scholar 

  • Elferink MG, Schleper C, Zillig W (1996) Transformation of the extremely thermoacidophilic archaeon Sulfolobus solfataricus via a self-spreading vector. FEMS Microbiol Lett 137:31–35

    CAS  Google Scholar 

  • Elliott AR, Silvert PY, Xue GP, Simpson GD, Tekaia-Elhsissen K, Aylward JH (1999) Transformation of Bacillus subtilis using the particle inflow gun and submicrometer particles obtained by the polyol process. Anal Biochem 269:418–420

    CAS  Google Scholar 

  • Fiedler S, Wirth R (1988) Transformation of bacteria with plasmid DNA by electroporation. Anal Biochem 170:38–44

    CAS  Google Scholar 

  • Fraley RT, Fornari CS, Kaplan S (1979) Entrapment of a bacterial plasmid in phospholipid-vesicles—potential for gene-transfer. Proc Natl Acad Sci USA 76:3348–3352

    CAS  Google Scholar 

  • Framson PE, Nittayajarn A, Merry J, Youngman P, Rubens CE (1997) New genetic techniques for group B streptococci: high-efficiency transformation, maintenance of temperature-sensitive pWV01 plasmids, and mutagenesis with Tn917. App Env Mircobiol 63:3539–3547

    CAS  Google Scholar 

  • Gerber SD, Solioz M (2007) Efficient transformation of Lactococcus lactis IL1403 and generation of knock-out mutants by homologous recombination. J Basic Microbiol 47:281–286

    CAS  Google Scholar 

  • Griffith F (1928) The significance of pneumococcal types. J Hyg-Cambridge 27:113–159

    Google Scholar 

  • Groot MN, Nieboer F, Abee T (2008) Enhanced transformation efficiency of recalcitrant Bacillus cereus and Bacillus weihenstephanensis isolates upon in vitro methylation of plasmid DNA. App Env Mircobiol 74:7817–7820

    CAS  Google Scholar 

  • Haake SK, Yoder SC, Attarian G, Podkaminer K (2000) Native plasmids of Fusobacterium nucleatum: characterization and use in development of genetic systems. J Bacteriol 182:1176–1180

    CAS  Google Scholar 

  • Hammes WP, Neuhaus FC (1973) Mechanism of glycine action on peptido glycan synthesis a role for phospho-N-acetyl muramic-acid penta peptide translocase. Abs Ann Meet Am Soc Microbiol 73:153

    Google Scholar 

  • Han YW, Ikegami A, Chung P, Zhang L, Deng CX (2007) Sonoporation is an efficient tool for intracellular fluorescent dextran delivery and one-step double-crossover mutant construction in Fusobactetium nucleatum. App Env Mircobiol 73:3677–3683

    CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    CAS  Google Scholar 

  • Hanahan D, Bloom FR (1996) Mehanisms of DNA transformation. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molevular biologi. American Society for Microbiology, Washington, D.C., pp 2449–2459

    Google Scholar 

  • Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113

    CAS  Google Scholar 

  • Harlander SK (1987) Transformation of Streptococcus lactis by electroporation

  • Hashiba H, Takiguchi R, Ishii S, Aoyama K (1990) Transformation of Lactobacillus helveticus subsp. jugurti with plasmid pLHR by electroporation. Agric Biol Chem 54:1537–1541

    CAS  Google Scholar 

  • Hattermann DR, Stacey G (1990) Efficient DNA transformation of Bradyrhizobium japonicum by electroporation. Appl Environ Microbiol 56:833–836

    CAS  Google Scholar 

  • Hoekstra WPM, Bergmans JEN, Zuidweg EM (1980) Role of recbc nuclease in Escherichia coli transformation. J Bacteriol 143:1031–1032

    CAS  Google Scholar 

  • Holo H, Nes IF (1989) High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123

    CAS  Google Scholar 

  • Holsters M, Dewaele D, Depicker A, Messens E, Vanmontagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefacies. Mol Gen Genet 163:181–187

    CAS  Google Scholar 

  • Hopwood DA, Wright HM (1978) Bacterial protoplast fusion: recombination in fused protoplasts of Streptomyces coelicolor. Mol Gen Genet 162:307–317

    CAS  Google Scholar 

  • Horiike T, Miyata D, Hamada K, Saruhashi S, Shinozawa T, Kumar S, Chakraborty R, Komiyama T, Tateno Y (2009) Phylogenetic construction of 17 bacterial phyla by new method and carefully selected orthologs. Gene 429:59–64

    CAS  Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    CAS  Google Scholar 

  • Itoh N, Kouzai T, Koide Y (1994) Efficient transformation of pseudomonas strains with pNI vectors by electroporation. Biosci Biotechnol Biochem 58:1306–1308

    CAS  Google Scholar 

  • Iwasaki K, Uchiyama H, Yagi O, Kurabayashi T, Ishizuka K, Takamura Y (1994) Transformation of Pseudomonas putida by electroporation. Biosci Biotechnol Biochem 58:851–854

    CAS  Google Scholar 

  • Jansen R, Chansiripornchai N, Gaastra W, van Putten JPM (2004) Characterization of plasmid pOR1 from Ornithobacterium rhinotracheale and construction of a shuttle plasmid. App Env Mircobiol 70:5853–5858

    CAS  Google Scholar 

  • Jessee JA, Bloom FR (1991) Process of producing highly transformable cells produced thereby. US Patent

  • Jiraskova A, Vitek L, Fevery J, Ruml T, Branny P (2005) Rapid protocol for electroporation of Clostridium perfringens. J Microbiol Methods 62:125–127

    CAS  Google Scholar 

  • Johnsborg O, Eldholm V, Havarstein LS (2007) Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol 158:767–778

    CAS  Google Scholar 

  • Jones IM, Primrose SB, Robinson A, Ellwood DC (1981) Effect of growth rate and nutrient limitation on the transformability of Escherichia coli with plasmid deoxyribonucleic acid. J Bacteriol 146:841–846

    CAS  Google Scholar 

  • Katsumata R, Ozaki A, Oka T, Furuya A (1984) Protoplast transformation of glutamatye producing bacteria with plasmid DNA. J Bacteriol 159:306–311

    CAS  Google Scholar 

  • Kawata Y, Yano S, Kojima H (2003) Escherichia coli can be transformed by a liposome-mediated lipofection method. Biosci Biotech Biochem 67:1179–1181

    CAS  Google Scholar 

  • Kawata Y, Yano S, Kojima H, Toyomizu M (2004) Transformation of Spirulina platensis strain C1 (Arthrospira sp PCC9438) with Tn5 transposase-transposon DNA-cation liposome complex. Mar Biotechnol 6:355–363

    CAS  Google Scholar 

  • Kim AY, Blaschek HP (1989) Construction of an Escherichia coli–Clostridium perfringens shuttle vector and plasmid transformation of Clostridium perfringens. Appl Environ Microbiol 55:360–365

    CAS  Google Scholar 

  • Kim YH, Han KS, Oh S, You S, Kim SH (2005) Optimization of technical conditions for the transformation of Lactobacillus acidophilus strains by electroporation. J Appl Microbiol 99:167–174

    CAS  Google Scholar 

  • Kinder Haake S, Yoder S, Hunt Gerardo S (2006) Efficient gene transfer and targeted mutagenesis in Fusobacterium nucleatum. Plasmid 55:27–38

    CAS  Google Scholar 

  • Kjaerulff S, Diep DB, Okkels JS, Scheller HV, Ormerod JG (1994) Highly efficient integration of foreign DNA into the genome of the green sulfur bacterium, chlorobium-vibrioforme by homologous recombination. Photosynth Res 41:277–283

    Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic-acids inti living cells. Nature 327:70–73

    CAS  Google Scholar 

  • Knight DE, Scrutton MC (1986) Gaining access to the cytosol—the technique and some applications of electropermenabilization. Biochem J 234:497–506

    CAS  Google Scholar 

  • Kwak J, Jiang H, Kendrick KE (2002) Transformation using in vivo and in vitro methylation in Streptomyces griseus. FEMS Microbiol Lett 209:243–248

    CAS  Google Scholar 

  • Kyrpides NC (2009) Fifteen years of microbial genomics: meeting the challenges and fulfilling the dream. Nature Biotech 27:627–632

    CAS  Google Scholar 

  • Lang D (1970) Molcular weights of coli phages and coli phages DNA part 3—contour length and molecular weight of DNA from bacterio phages T-4 T-5 and T7 from bovine papilloma virus. J Mol Biol 54:557–565

    CAS  Google Scholar 

  • Lawrenz MB, Kawabata H, Purser JE, Norris SJ (2002) Decreased electroporation efficiency in Borrelia burgdorferi containing linear plasmids 1p25 and 1p56: impact on transformation of infectious B-burgdorferi. Infect Immun 70:4798–4804

    CAS  Google Scholar 

  • Lederberg J (2000) Infectious history. Science 288:287–293

    CAS  Google Scholar 

  • Lederberg E, Cohen SN (1974) Transformation of Salmonella typhimurium by plasmid deoxyribonucleic acid. J Bacteriol 119:1072–1074

    CAS  Google Scholar 

  • Lee KY, Kwon IC, Kim YH, Jo WH, Jeong SY (1998) Preparation of chitosan self-aggregates as a gene delivery system. J Control Release 51:213–220

    CAS  Google Scholar 

  • Leonardo ED, Sedivy JM (1990) A new vector for cloning large eukaryotic DNA segments in Escherichia coli. Biotechnology (N Y) 8:841–844

    CAS  Google Scholar 

  • Leong KW, Mao HQ, Truong-Le VL, Roy K, Walsh SM, August JT (1998) DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release 53:183–193

    CAS  Google Scholar 

  • Li S, Anderson LM, Yang JM, Lin L, Yang H (2007) DNA transformation via local heat shock. App Phys lett 91

  • Lin C, Dong B, Qian C (1984) Study of the plasmid of Bacillus polymyxa 2. Formation regeneratio and transformation of Bacillus polymyxa protoplast. Acta Genetica Sinica 11:245–252

    Google Scholar 

  • Liu WG, De Yao K (2002) Chitosan and its derivatives—a promising non-viral vector for gene transfection. J Control Release 83:1–11

    Google Scholar 

  • Liu Y, Yang H, Sakanishi A (2006) Ultrasound: mechanical gene transfer into plant cells by sonoporation. Biotechnol Adv 24:1–16

    CAS  Google Scholar 

  • Löfblom J, Kronqvist N, Uhlé M, Ståhl S, Wernérus H (2007) Optimization of electroporation-mediated transformation: Staphylococcus carnosus as model organism. J Applied Microbiol 102:736–747

    Google Scholar 

  • Louvel H, Picardeau M (2007) Genetic manipulation of Leptospira biflexa. Curr Protoc Microbiol Chapter 12:Unit 12E 14

  • Lucas S, Toffin L, Zivanovic Y, Charlier D, Moussard H, Forterre P, Prieur D, Erauso G (2002) Construction of a shuttle vector for, and spheroplast transformation of, the hyperthermophilic archaeon Pyrococcus abyssi. Appl Environ Microbiol 68:5528–5536

    CAS  Google Scholar 

  • Luchansky JB, Muriana PM, Klaenhammer TR (1988) Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Mol Microbiol 2:637–646

    CAS  Google Scholar 

  • Ludwig A, Heimbucher T, Gregor W, Czerny T, Schmetterer G (2008) Transformation and gene replacement in the facultatively chemoheterotrophic, unicellular cyanobacterium Synechocystis sp PCC6714 by electroporation. Appl Microbiol Biotechnol 78:729–735

    CAS  Google Scholar 

  • MacLaughlin FC, Mumper RJ, Wang JJ, Tagliaferri JM, Gill I, Hinchcliffe M, Rolland AP (1998) Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Release 56:259–272

    CAS  Google Scholar 

  • Mai V, Lorenz WW, Wiegel J (1997) Transformation of Thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiol Lett 148:163–167

    CAS  Google Scholar 

  • Makins JF, Holt G (1981) Liposome-mediated transformation of Streptomycetes by chromosomal DNA. Nature 293:671–673

    CAS  Google Scholar 

  • Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162

    CAS  Google Scholar 

  • Marciset O, Mollet B (1994) Multifactorial experimental design for optimizing transformation: electroporation of Streptococcus thermophilus. Biotechnol Bioeng 43:490–496

    CAS  Google Scholar 

  • Matsushita K, Adachi O, Shinagawa E, Ameyama M (1978) Isolation and characterization of outer and inner membranes from Pseudomonas aeruginosa and effect of EDTA on the membranes. J Biochem 83:171–181

    CAS  Google Scholar 

  • McBride MJ, Baker SA (1996) Development of techniques to genetically manipulate members of the genera Cytophaga, Flavobacterium, Flexibacter, and Sporocytophaga. Appl Environ Microbiol 62:3017–3022

    CAS  Google Scholar 

  • McCarty M, Avery OT (1946a) Studies on the cheimical nature of the substance inducing transformation of Pneumococcal type 2. Effect of desoxyribonuclease on the biological activity of the transformation substance. J Exp Med—Cambridge 83:89–96

    CAS  Google Scholar 

  • McCarty M, Avery OT (1946b) Studies on the cheimical nature of the substance inducing transformation of Pneumococcal type 3. An improved method for the isolation of the transforming substance and its application to Pheumococcus type-II, type-III, and type VI. J Exp Med - Cambrigde 83:97–104

    CAS  Google Scholar 

  • McCarty M, Taylor HE, Avery OT (1946) Biochemical studies of environmental factors essential in transformation of Pneumococcus types. Cold Spring Harb Symp Quant Biol 11:177–183

    CAS  Google Scholar 

  • McDonald IR, Riley PW, Sharp RJ, McCarthy AJ (1995) Factors affecting the electroporation of Bacillus subtilis. J Appl Bacteriol 79:213–218

    CAS  Google Scholar 

  • McIntyre DA, Harlander SK (1989a) Genetic transformation of intact Lactococcus lactis subsp. lactis by high-voltage electroporation. Appl Environ Microbiol 55:604–610

    CAS  Google Scholar 

  • McIntyre DA, Harlander SK (1989b) Improved electroporation efficiency of intact Lactococcus lactis subsp. lactis cells grown in defined media. Appl Environ Microbiol 55:2621–2626

    CAS  Google Scholar 

  • Mercenier A, Robert C, Romero DA, Castellino I, Slos P, Lemoine Y (1988) Development of an effient spheroplast transformation procedure for S. thermophilus—the use of transfection to define a regeneration medium. Biochimie 70:567–577

    CAS  Google Scholar 

  • Mermelstein LD, Papoutsakis ET (1993) In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 59:1077–1081

    CAS  Google Scholar 

  • Merrick MJ, Gibbins JR, Postgate JR (1987) A rapid and efficient method for plasmid transformation of Klebsiella pneumoniae and Escherichia coli. J Gen Mirobiol 133:2053–2057

    CAS  Google Scholar 

  • Metcalf WW, Zhang JK, Apolinario E, Sowers KR, Wolfe RS (1997) A genetic system for Archaea of the genus Methanosarcina: liposome-mediated transformation and construction of shuttle vectors. Proc Natl Acad Sci USA 94:2626–2631

    CAS  Google Scholar 

  • Metzler MC, Zhang YP, Chen TA (1992) Transformation of the gram-positive bacterium Clavibacter xyli subsp. cynodontis by electroporation with plasmids from the IncP incompatibility group. J Bacteriol 174:4500–4503

    CAS  Google Scholar 

  • Micheletti PA, Sment KA, Konisky J (1991) Isolation of a coenzyme M-auxotrophic mutant and transformation by electroporation in Methanococcus voltae. J Bacteriol 173:3414–3418

    CAS  Google Scholar 

  • Miller JF, Dower WJ, Tompkins LS (1988) High-voltage electroporation of bacteria: genetic transformation of Campylobacter jejuni with plasmid DNA. Proc Natl Acad Sci USA 85:856–860

    CAS  Google Scholar 

  • Mizuno T, Mutoh N, Panasenko SM, Imae Y (1986) Acquisition of maltose chemotaxis in Salmonella typhimurium by the introduction of Escherichia coli chemosensory transducer gene. J Bacteriol 165:890–895

    CAS  Google Scholar 

  • Morelli L, Cocconcelli PS, Bottazzi V, Damiani G, Ferretti L, Sgaramella V (1987) Lactobacillus protoplast transformation. Plasmid 17:73–75

    CAS  Google Scholar 

  • Mozo T, Hooykaas PJ (1991) Electroporation of megaplasmids into Agrobacterium. Plant Mol Biol 16:917–918

    CAS  Google Scholar 

  • Mumper RJ, Wang JJ, Claspell JM, Rolland AP (1995) Novel polymeric condensing carriers for gene delivery. Proceedings of the International Symposium on Controlled Release Bioactive Materials 22:178–179

    Google Scholar 

  • Neumann E, Schaeferridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. Embo J 1:841–845

    CAS  Google Scholar 

  • Nicolau C, Rottem S (1982) Expression of a beta-lactamase activity in mycoplasma-capricolum transfected with the liposome-encapsulated Escherichia coli Pbr 322 plasmid. Biochem Biophys Res Commun 108:982–986

    CAS  Google Scholar 

  • Nogales B, Guerrero R, Esteve I (1994) Susceptibility of various purple and green sulfur bacteria to different antimicrobial agents. FEMS Microbiol Lett 123:37–42

    CAS  Google Scholar 

  • Nørgard MV, Keem K, Monahan JJ (1978) Factors affecting the transformation of Escherichia coli strain chi1776 by pBR322 plasmid DNA. Gene 3:279–292

    Google Scholar 

  • Ogawa H, Imai S, Shimizu T, Satoh A, Kojima M (1983) Cosynthesis and protoplast fusion by mutants of bialaphos (AMPBA) producing Streptomyces hygroscopicus. J Antibiot (Tokyo) 36:1040–1044

    CAS  Google Scholar 

  • Ohse M, Takahashi K, Kadowaki Y, Kusaoke H (1995) Effects of plasmid DNA sizes and several other factors on transformation of Bacillus subtilis ISW1214 with plasmid DNA by electroporation. Biosci Biotechnol Biochem 59:1433–1437

    CAS  Google Scholar 

  • Ohse M, Kawade K, Kusaoke H (1997) Effects of DNA topology on transformation efficiency of Bacillus subtilis ISW1214 by electroporation. Biosci Biotechnol Biochem 61:1019–1021

    CAS  Google Scholar 

  • Okamoto T, Fujita Y, Irie R (1983) Protoplast formation and regeneration of Streptococcus lactis cells. Agric Biol Chem 47:259–263

    CAS  Google Scholar 

  • Panja S, Saha S, Jana B, Basu T (2006) Role of membrane potential on artificial transformation of E. coli with plasmid DNA. J Biotechnol 127:14–20

    CAS  Google Scholar 

  • Park SF, Stewart GS (1990) High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene 94:129–132

    CAS  Google Scholar 

  • Patel GB, Nash JH, Agnew BJ, Sprott GD (1994) Natural and electroporation-mediated transformation of Methanococcus voltae protoplasts. Appl Environ Microbiol 60:903–907

    CAS  Google Scholar 

  • Peng D, Luo Y, Guo S, Zeng H, Ju S, Yu Z, Sun M (2009) Elaboration of an electroporation protocol for large plasmids and wild-type strains of Bacillus thuringiensis. J Appl Microbiol 106:1849–58

    CAS  Google Scholar 

  • Pigac J, Schrempf H (1995) A simple and rapid method of transformation of Streptomyces rimosus R6 and Other Streptomycetes by electroporation. Appl Environ Microbiol 61:352–356

    CAS  Google Scholar 

  • Potter H, Weir L, Leder P (1984) Enhancer dependent expression of human kappa-immunoglobulin genes introduced into mouse pre-Blymphocytes by electroporation. Proc Natl Acad Sci USA 81:7161–7165

    CAS  Google Scholar 

  • Powell IB, Achen MG, Hillier AJ, Davidson BE (1988) A simple and rapid method for genetic transformation of lactic Streptococci by electroporation. Appl Environ Microbiol 54:655–660

    CAS  Google Scholar 

  • Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    CAS  Google Scholar 

  • Rhee MS, Kim JW, Qian Y, Ingram LO, Shanmugam KT (2007) Development of plasmid vector and electroporation condition for gene transfer in sporogenic lactic acid bacterium, Bacillus coagulans. Plasmid 58:13–22

    CAS  Google Scholar 

  • Ricci ML, Manganelli R, Berneri C, Orefici G, Pozzi G (1994) Electrontransformation of Streptococcus agalactine with pladsmid DNA. FEMS Microbiol Lett 119:47–52

    CAS  Google Scholar 

  • Rinken R, Wackernagel W (1992) Inhibition of the recBCD-dependent activation of chi recombinational hot-spots in SOS-induced cells of Escherichia coli. J Bacteriol 174:1172–1178

    CAS  Google Scholar 

  • Rodriguez MC, Alegre MT, Mesas JM (2007) Optimization of technical conditions for the transformation of Pediococcus acidilactici P60 by electroporation. Plasmid 58:44–50

    CAS  Google Scholar 

  • Romero D, Perez-Garcia A, Veening JW, de Vicente A, Kuipers OP (2006) Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation. J Microbiol Methods 66:556–559

    CAS  Google Scholar 

  • Sakaki K, Dechev N, Burke RD, Park EJ (2009) Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities. IEEE Trans Biomed Eng 56:2064–2074

    Google Scholar 

  • Samuels DS, Garon CF (1997) Oligonucleotide-mediated genetic transformation of Borrelia burgdorferi. Microbiology-Uk 143:519-522

    Google Scholar 

  • Santarem ER, Trick HN, Essig JS, Finer JJ (1998) Sonication assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752–759

    CAS  Google Scholar 

  • Satoh Y, Hatakeyama K, Kohama K, Kobayashi M, Kurusu Y, Yukawa H (1990) Electrotransformation of intact cells of Brevibacterium flavum MJ-233. J Ind Microbiol 5:159–165

    CAS  Google Scholar 

  • Schlaak C, Hoffmann P, May K, Weimann A (2005) Desalting minimal amounts of DNA for electroporation in E. coli: a comparison of different physical methods. Biotechnol Lett 27:1003–1005

    CAS  Google Scholar 

  • Schleper C, Kubo K, Zillig W (1992) The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc Natl Acad Sci USA 89:7645–7649

    CAS  Google Scholar 

  • Schnaitman CA (1971) Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100. J Bacteriol 108:545–552

    CAS  Google Scholar 

  • Schurter W, Geiser M, Mathe D (1989) Efficient transformation of Bacillus thuringiensis and B. cereus via electroporation: transformation of acrystalliferous strains with a cloned delta-endotoxin gene. Mol Gen Genet 218:177–181

    CAS  Google Scholar 

  • Scott PT, Rood JI (1989) Electroporation-mediated transformation of lysostaphin-treated Clostridium perfringens. Gene 82:327–333

    CAS  Google Scholar 

  • Sekizaki T, Tanoue T, Osaki M, Shimoji Y, Tsubaki S, Takai S (1998) Improved electroporation of Rhodococcus equi. J Vet Med Sci 60:277–279

    CAS  Google Scholar 

  • Selvaraj G, Iyer VN (1981) Genetic transformation of Rhizobium meliloti by plasmid DNA. Gene 15:279–283

    CAS  Google Scholar 

  • Shark KB, Smith FD, Harpending PR, Rasmussen JL, Sanford JC (1991) Biolistic transformation of a prokaryote, Bacillus megaterium. Appl Environ Microbiol 57:480–485

    CAS  Google Scholar 

  • Sharma AD, Singh J, Gill PK (2007) Ethanol mediated enhancement in bacterial transformation. J Biotechnol 10:166–168

    Google Scholar 

  • Shokolenko IN, Alexeyev MF (1995) Transformation of Escherichia coli TG1 and Klebsiella oxytoca VN13 by freezing–thawing procedure. Biotechniques 18:596–598

    CAS  Google Scholar 

  • Siguret V, Ribba AS, Cherel G, Meyer D, Pietu G (1994) Effect of plasmid size on transformation efficiency by electroporation of Escherichia coli DH5 alpha. Biotechniques 16:422–426

    CAS  Google Scholar 

  • Smith MD, Flickinger JL, Lineberger DW, Schmidt B (1986) Protoplast transformation in coryneform bacteria and introduction of an alpha-amylase gene from Bacillus amyloliquefaciens into Brevibacterium lactofermentum. Appl Environ Microbiol 51:634–639

    CAS  Google Scholar 

  • Somkuti GA, Steinberg DH (1988) Genetic transformation of Streptococcus thermophilus by electroporation. Biochimie 70:579–585

    CAS  Google Scholar 

  • Song YZ, Hahn T, Thompson IP, Mason TJ, Preston GM, Li GH, Paniwnyk L, Huang WE (2007) Ultrasound-mediated DNA transfer for bacteria. Nucleic Acids Res 35:e129

    Google Scholar 

  • Stepanov AS, Puzanova OB, Dityatkin SY, Loginova OG, Ilyashenko BN (1990) Glycine induced cryotransformation of plasmid into Bacillus anthracis. J Gen Microbiol 136:1217–1221

    CAS  Google Scholar 

  • Taketo A, Kuno S (1974) Sensitivity of Escherichia coli to viral nucleic acid. 7. Further studies on Ca2+ induced compentence. J Biochem 75:59–67

    CAS  Google Scholar 

  • Tam JE, Davis CH, Wyrick PB (1994) Expressionof recombinant-DNA introduced into Chlamydia trachomatis by electroporation. Can J Microbiol 40:583–591

    Article  CAS  Google Scholar 

  • Tang XR, Nakata Y, Li HO, Zhang MD, Gao H, Fujita A, Sakatsume O, Ohta T, Yokoyama K (1994) The optimization of preparations of competent cells for transformation of Escherichia coli. Nucleic Acids Res 22:2857–2858

    CAS  Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053

    CAS  Google Scholar 

  • Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta 1724:270–280

    CAS  Google Scholar 

  • Trick HN, Finer JJ (1997) SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    CAS  Google Scholar 

  • Trick HN, Finer JJ (1998) Sonication assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep 17:482–488

    CAS  Google Scholar 

  • Turgeon N, Laflamme C, Ho J, Duchaine C (2006) Elaboration of an electroporation protocol for Bacillus cereus ATCC 14579. J Microbiol Methods 67:543–548

    CAS  Google Scholar 

  • Tyurin MV, Desai SG, Lynd LR (2004) Electrotransformation of Clostridium thermocellum. Appl Environ Microbiol 70:883–890

    CAS  Google Scholar 

  • van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. App Microbiol Biotech 52:541–545

    Google Scholar 

  • Vehmaanpera J (1989) Transformation of Bacillus amyloliquefaciens by electroporation. FEMS Microbiol Lett 52:165–169

    CAS  Google Scholar 

  • Vioque A (2007) Transformation of cyanobacteria. Adv Exp Med Biol 616:12–22

    Google Scholar 

  • Wackernagel W (1973) Genetic transformation in E.coli—inhibitory role of reCBC DNAse. Biochem Biophys Res Commun 51:306–311

    CAS  Google Scholar 

  • Wards BJ, Collins DM (1996) Electroporation at elevated temperatures substantially improves transformation efficiency of slow-growing mycobacteria. FEMS Microbiol Lett 145:101-105

    CAS  Google Scholar 

  • Wells JM, Wilson PW, Le Page RW (1993) Improved cloning vectors and transformation procedure for Lactococcus lactis. J Appl Bacteriol 74:629–636

    CAS  Google Scholar 

  • Weston A, Brown MGM, Perkins HR, Saunders JR, Humphreys GO (1981) Transformation of Escherichia coli with plasmid deoxyribonucleic acid-calcium induced binding of deoxyribonucleic acid to whole cells and to isolated membrane fractions. J Biotechnol 145:780–787

    CAS  Google Scholar 

  • Wirth R, Friesenegger A, Fiedler S (1989) Transformation of various species of gram-negative bacteria belonging to 11 different genera by electroporation. Mol Gen Genet 216:175–177

    CAS  Google Scholar 

  • Wu LJ, Welker NE (1989) Protoplast transformation of Bacillus stearothermophilus NUB36 by plasmid DNA. J Gen Microbiol 135:1315–1324

    CAS  Google Scholar 

  • Wyber JA, Andrews J, DEmanuele A (1997) The use of sonication for the efficient delivery of plasmid DNA into cells. Pharm Res 14:750–756

    CAS  Google Scholar 

  • Yasui K, Kano Y, Tanaka K, Watanabe K, Shimizu-Kadota M, Yoshikawa H, Suzuki T (2009) Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucleic Acids Res 37:e3

    Google Scholar 

  • Yoshida N, Ide K (2008) Plasmid DNA is released from nanosized acicular material surface by low molecular weight oligonucleotides: exogenous plasmid acquisition mechanism for penetration intermediates based on the Yoshida effect. Appl Microbiol Biotechnol 80:813–821

    CAS  Google Scholar 

  • Yu JS, Vargas M, Mityas C, Noll KM (2001) Liposome-mediated DNA uptake and transient expression in Thermotoga. Extremophiles 5:53–60

    CAS  Google Scholar 

  • Zibat A (2001) Efficient transformation of Halobacterium salinarum by a “freeze and thaw” technique. Biotechniques 31:1010–1012

    CAS  Google Scholar 

Download references

Acknowledgments

FLA thanks the KMB project, Norwegian Research Council for financial support. Furthermore, we thank Svein Valla for proofreading the manuscript and for useful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn Lillelund Aachmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aune, T.E.V., Aachmann, F.L. Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed. Appl Microbiol Biotechnol 85, 1301–1313 (2010). https://doi.org/10.1007/s00253-009-2349-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2349-1

Keywords

Navigation