Skip to main content
Log in

Quantitative proteomics: assessing the spectrum of in-gel protein detection methods

  • Review
  • Published:
Journal of Chemical Biology

Abstract

Proteomics research relies heavily on visualization methods for detection of proteins separated by polyacrylamide gel electrophoresis. Commonly used staining approaches involve colorimetric dyes such as Coomassie Brilliant Blue, fluorescent dyes including Sypro Ruby, newly developed reactive fluorophores, as well as a plethora of others. The most desired characteristic in selecting one stain over another is sensitivity, but this is far from the only important parameter. This review evaluates protein detection methods in terms of their quantitative attributes, including limit of detection (i.e., sensitivity), linear dynamic range, inter-protein variability, capacity for spot detection after 2D gel electrophoresis, and compatibility with subsequent mass spectrometric analyses. Unfortunately, many of these quantitative criteria are not routinely or consistently addressed by most of the studies published to date. We would urge more rigorous routine characterization of stains and detection methodologies as a critical approach to systematically improving these critically important tools for quantitative proteomics. In addition, substantial improvements in detection technology, particularly over the last decade or so, emphasize the need to consider renewed characterization of existing stains; the quantitative stains we need, or at least the chemistries required for their future development, may well already exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2DE:

two-dimensional electrophoresis

BisANS:

4,4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid

BSA:

bovine serum albumin

C16-F:

C-16 fluorescein

CA:

carbonic anhydrase

CBB:

Coomassie Brilliant Blue

cCBB:

colloidal Coomassie Brilliant Blue

CCD:

cooled charge device

Cy2:

Cyanine 2

Cy3:

Cyanine 3

Cy5:

Cyanine 5

cys:

cysteine

DIGE:

differential gel electrophoresis

DMSO:

dimethyl sulfoxide

DP:

deep purple

DTT:

dithiothreitol

EBT:

erichrome black T

EDTA:

ethylene diamine tetraacetic acid

EtOH:

ethanol

EZ:

ethyl violet and zincon

HAc:

acetic acid

HSA:

human serum albumin

ICy:

iodoacetylated cyanine dye

IEF:

isoelectric focusing

LC:

liquid chromatography

LDR:

linear dynamic range

LLD:

lowest limit of detection

lys:

lysine

MALDI-ToF-MS:

matrix-assisted laser desorption ionization-time of flight-mass spectrometry

mBB:

monobromobimane

MDPF:

two-methoxy-2,4-diphenyl-3(2H)-furanone

MeOH:

methanol

MS:

mass spectrometry

MW:

molecular weight

OPA:

o-phthalaldehyde

OVA:

ovalbumin

PAGE:

polyacrylamide gel electrophoresis

PAS:

periodic acid-Schiff

PhosB:

phosphorylase b

PMF:

peptide mass fingerprinting

RuBPS:

ruthenium (II) tris (bathophenanthroline disulfonate)

SA:

Stains All (1-ethyl-2-{3- [1-ethylnaphtho (1,2d) thiazolin-2-ylidene]-2-methyl-propenyl}-naptho (1,2d) thiazolium bromide)

SDS:

sodium dodecyl sulfate

SNR:

signal-to-noise ratio

sp.:

species

SR:

SYPRO Ruby

TCEP:

Tris (2-carboxyethyl) phosphine hydrochloride

Trp:

tryptophan

UV:

ultraviolet

References

  1. Mathews CK, van Holde KE, Ahern KG (2000) Biochemistry, 3rd edn. Addison-Wesley Publishing Company, Canada, p 1186

    Google Scholar 

  2. Lodish H, Berk A, Matsudaira P, Kaiser CA, Kreiger M, Scott MP, Zipursky SL, Darnell J (2004) Molecular cell biology, 5th edn. W. H. Freeman Company, New York

    Google Scholar 

  3. Wittmann-Liebold B, Graack H-R, Pohl T (2006) Two-dimensional gel electrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics 6:4688–4703

    CAS  Google Scholar 

  4. Righetti PG (2005) Electrophoresis: the march of pennies, the march of dimes. J Chromatogr A 1079:24–40

    CAS  Google Scholar 

  5. Ong S-E, Pandey A (2001) An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomol Eng 18:195–205

    CAS  Google Scholar 

  6. O'Farrel PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    Google Scholar 

  7. Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissue. Humangenetik 26:231–243

    CAS  Google Scholar 

  8. Anderson NL, Nance SL, Tollaksen SL, Giere FA, Anderson NG (1985) Quantitative reproducibility of measurements from coomassie blue-stained two-dimensional gels: Analysis of mouse liver protein patterns and a comparison of BALB/c and C57 strains. Electrophor 6:592–599

    CAS  Google Scholar 

  9. Blomberg A, Blomberg L, Norbeck J, Fey SJ, Larsen PM, Larsen M, Roepstorff P, Degand H, Boutry M, Posch A, Görg A (1995) Interlaboratory reproducibility of yeast protein patterns analyzed by immobilized pH gradient two-dimensional gel electrophoresis. Electrophor 16:1935–1945

    CAS  Google Scholar 

  10. Gade D, Thiermann J, Markowsky D, Rabus R (2003) Evaluation of two-dimensional difference gel electrophoresis for protein profiling. J Mol Microbiol Biotechnol 5:240–251

    CAS  Google Scholar 

  11. Butt RH, Lee MWY, Pirshahid SA, Backlund PS, Wood S, Coorssen JR (2006) An initial proteomic analysis of human preterm labor: placental membranes. J Proteome Res 1:391–396

    Google Scholar 

  12. Butt RH, Pfeifer TA, Delaney A, Grigliatti TA, Tetzlaff WG, Coorssen JR (2007) Enabling coupled quantitative genomics and proteomics analyses from rat spinal cord samples. Mol Cell Proteomics 6:1574–1588

    CAS  Google Scholar 

  13. Rabilloud T (2002) Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2:3–10

    CAS  Google Scholar 

  14. Hoving S, Voshol H, Van Oostrum J (2000) Towards high performance two-dimensional gel electrophoresis using ultrazoom gels. Electrophor 21:2617–2621

    CAS  Google Scholar 

  15. Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA 97:9390–9395

    CAS  Google Scholar 

  16. Butt RH, Coorssen JR (2005) Postfractionation for enhanced proteomic analyses: routine electrophoretic methods increase the resolution of standard 2D-PAGE. J Proteome Res 4:982–991

    CAS  Google Scholar 

  17. Chevalier F, Rofidal V, Vanova P, Bergoin A, Rossignol M (2004) Proteomic capacity of recent fluorescent dyes for protein staining. Phytochem 65:1499–1506

    CAS  Google Scholar 

  18. De St. Groth SF, Webster RG, Datyner A (1963) Two new staining procedures for quantitative estimation of proteins on electrophoretic strips. Biochem Biophys Acta 71:377–391

  19. Switzer RC, Merril CR, Shifrin S (1979) A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem 98:231–237

    CAS  Google Scholar 

  20. Berggren K, Chernokalskaya E, Steinberg TH, Kemper C, Lopez MF, Diwu Z, Haugland RP, Patton WF (2000) Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophor 21:2509–2521

    CAS  Google Scholar 

  21. Harris LR, Churchwood MA, Butt RH, Coorssen JR (2007) Assessing detection methods for gel-based proteomic analyses. J Proteome Res 6:1418–1425

    CAS  Google Scholar 

  22. Long GL, Winefordner JD (2008) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55:712A–724A

    Google Scholar 

  23. Raymond S, Weintraub L (1959) Acrylamide gel as a supporting medium for zone electrophoresis. Science 130:711

    CAS  Google Scholar 

  24. Raymond S, Wang Y-J (1960) Preparation and properties of acrylamide gel for use in electrophoresis. Anal protein cyclization promoted by a circularly permuted Synechocystis sp. PCC6803 DnaD mini-intein. J Biol Chem 277:7790–7798

    Google Scholar 

  25. Raymond S (1964) Acrylamide gel electrophoresis. Ann NY Acad Sci 121:350–365

    CAS  Google Scholar 

  26. Meyer TS, Lamberts BL (1965) Use of coomassie brilliant blue R250 for the electrophoresis of microgram quantities of parotid saliva proteins on acrylamide-gel strips. Biochim Biophys Acta-Gen Sub 107:144–145

    CAS  Google Scholar 

  27. Compton SJ, Jones CG (1985) Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem 151:369–374

    CAS  Google Scholar 

  28. Congdon RW, Muth GW, Splittgerber AG (1993) The binding interaction of coomassie blue with proteins. Anal Biochem 213:407–413

    CAS  Google Scholar 

  29. Tal M, Silberstein A, Nusser E (1985) Why does Coomassie Brilliant Blue R interact differently with different proteins? A partial answer. J Biol Chem 260:9976–9980

    CAS  Google Scholar 

  30. Vesterberg O (1971) Staining of protein zones after isoelectric focusing in polyacrylamide gels. Biochim Biophys Acta-Protein Structure 243:345–348

    CAS  Google Scholar 

  31. Diezel W, Kopperschläger G, Hofmann E (1972) An improved procedure for protein staining in polyacrylamide gels with a new type of Coomassie Brilliant Blue. Anal Biochem 48:617–620

    CAS  Google Scholar 

  32. Malik N, Berrie A (1972) New stain fixative for proteins separated by gel isoelectric focusing based on coomassie brilliant blue. Anal Biochem 49:173–176

    CAS  Google Scholar 

  33. Reisner AH, Nemes P, Bucholtz C (1975) The use of coomassie brilliant blue G250 perchloric acid solution for staining in electrophoresis and isoelectric focusing on polyacrylamide gels. Anal Biochem 64:509–516

    CAS  Google Scholar 

  34. Vesterberg O, Hansén L, Sjösten A (1977) Staining of proteins after isoelectric focusing in gels by new procedures. Biochim Biophys Acta-Protein Structure 491:160–166

    CAS  Google Scholar 

  35. Zehr BD, Savin TJ, Hall RE (1989) A one-step, low background coomassie staining procedure for polyacrylamide gels. Anal Biochem 182:157–159

    CAS  Google Scholar 

  36. Chen H, Cheng H, Bjerknes M (1993) One-step coomassie brilliant Blue R-250 staining of proteins in polyacrylamide gels. Anal Biochem 212:295–296

    CAS  Google Scholar 

  37. Mitra P, Pal AK, Basu D, Hati RN (1994) A staining procedure using coomassie brilliant blue G-250 in phosphoric acid for detection of proteinbands with high resolution in polyacrylamide gel and nitrocellulose membrane. Anal Biochem 223:327–329

    CAS  Google Scholar 

  38. Sreeramulu G, Singh NK (1995) Destaining of coomassie brilliant blue R-250-stained polyacrylamide gels with sodium chloride solutions. Electrophor 16:362–365

    CAS  Google Scholar 

  39. Nivinskas H, Cole KD (1996) Environmentally benign staining procedures for electrophoresis gels using coomassie brilliant blue. Biotech 20:380–385

    CAS  Google Scholar 

  40. Wu W, Welsh MJ (1996) Rapid coomassie blue staining and destaining of polyacrylamide gels. Biotech 20:386–388

    CAS  Google Scholar 

  41. Kang D, Gho YS, Suh M, Kang C (2002) Highly sensitive and fast protein detection with coomassie brilliant blue in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bull Korean Chem Soc 23:1511–1512

    CAS  Google Scholar 

  42. Chrambach A, Reisfeld RA, Wyckoff M, Zaccari J (1967) A procedure for rapid and sensitive staining of protein fractionated by polyacrylamide gel electrophoresis. Anal Biochem 20:150–154

    CAS  Google Scholar 

  43. Kahn R, Rubin RW (1975) Quantitation of submicrogram amounts of protein using coomassie brilliant blue R on sodium dodecyl sulfate-polyacrylamide slab-gels. Anal Biochem 67:347–352

    CAS  Google Scholar 

  44. Blakesley RW, Boezi JA (1977) A new staining technique for proteins in polyacrylamide gels using coomassie brilliant blue G250. Anal Biochem 82:580–582

    CAS  Google Scholar 

  45. Choi J-K, Yoon S-H, Hong H-Y, Choi D-K, Yoo G-S (1996) A modified coomassie blue staining of proteins in polyacrylamide gels with bismark brown R. Anal Biochem 236:82–84

    CAS  Google Scholar 

  46. Poehling H-M, Neuhoff V (1981) Visualization of proteins with a silver stain: a critical analysis. Electrophor 2:141–147

    CAS  Google Scholar 

  47. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using coomassie brilliant blue G-250 and R-250. Electrophor 9:255–262

    CAS  Google Scholar 

  48. Neuhoff V, Stamm R, Eibl H (1985) Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: a systematic analysis. Electrophor 6:427–448

    CAS  Google Scholar 

  49. Choi J-K, Chae H-Z, Hwang S-Y, Choi H-I, Jin L-T, Yoo G-S (2004) Fast visible dye staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels compatible with matrix assisted laser desorption/ionization-mass spectrometry. Electrophor 25:1136–1141

    CAS  Google Scholar 

  50. Lin C-Y, Wang V, Shui H-A, Juang R-H, Hour A-L, Chen P-S, Huang H-M, Wu S-Y, Lee J-C, Tsai T-L, Chen H-M (2009) A comprehensive evaluation of imidazole-zinc reverse stain for current proteomic researches. Proteomics 9:696–709

    CAS  Google Scholar 

  51. Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal coomassie G-250 staining for proteome analysis. Electrophor 25:1327–1333

    CAS  Google Scholar 

  52. Heukeshoven J, Dernick R (1988) Increased sensitivity for coomassie staining of sodium dodecyl sulfate-polyacrylamide gels using PhastSystem development unit. Electrophor 9:60–61

    CAS  Google Scholar 

  53. Wong C, Sridhara S, Bardwell JCA, Jakob U (2000) Heating greatly speeds coomassie blue staining and destaining. Biotech 28:426–432

    CAS  Google Scholar 

  54. Luo S, Wehr NB, Levine RL (2006) Quantitation of protein on gels and blots by infrared fluorescence of coomassie blue and fast green. Anal Biochem 350:233–238

    CAS  Google Scholar 

  55. Wang X, Li X, Li Y (2007) A modified Coomassie Brilliant Blue staining method at nanogram sensitivity compatible with proteomic analysis. Biotech Lett 29:1599–1603

    CAS  Google Scholar 

  56. Choi J-K, Yoo G-S (2002) Fast protein staining in sodium dodecyl sulfate polacrylamide gel using counter ion-dyes, coomassie brilliant blue R-250 and neutral red. Arch Pharm Res 25:704–708

    CAS  Google Scholar 

  57. Fernandez-Patron C, Hardy E, Sosa A, Seoane J, Castellanos L (1995) Double staining of coomassie blue-stained polyacrylamide gels by imidazole-sodium dodecyl sulfate-zinc reverse staining: Sensitive detection of coomassie blue-undetected proteins. Anal Biochem 224:263–269

    CAS  Google Scholar 

  58. Oakley BR, Kirsch DR, Morris NR (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem 105:361–363

    CAS  Google Scholar 

  59. Merril CR, Goldman D, Sedman SA, Ebert MH (1981) Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211:1437–1438

    CAS  Google Scholar 

  60. Morrissey JH (1981) Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem 117:307–310

    CAS  Google Scholar 

  61. Wray W, Boulikas T, Wray VP, Hancock R (1981) Silver staining of proteins in polyacrylamide gels. Anal Biochem 118:197–203

    CAS  Google Scholar 

  62. Merril CR, Dunau ML, Goldman D (1981) A rapid sensitive silver stain for polypeptides in polyacrylamide gels. Anal Biochem 110:201–207

    CAS  Google Scholar 

  63. Merril CR, Goldman D, Van Keuren ML (1982) Simplified silver protein detection and image enhancement methods in polyacrylamide gels. Electrophor 3:17–23

    CAS  Google Scholar 

  64. Merril CR, Harrington MG, Alley V (1984) A photodevelopment silver stain for the rapid visualization of proteins separated on polyacrylamide gels. Electrophor 5:289–297

    CAS  Google Scholar 

  65. Biel HJ, Gronski P, Seiler FR (1986) Fast silver staining of polyacrylamide gels at elevated temperatures. Electrophor 7:232–235

    CAS  Google Scholar 

  66. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophor 8:93–99

    CAS  Google Scholar 

  67. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    CAS  Google Scholar 

  68. Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization- mass spectrometry. Electrophor 21:3666–3672

    CAS  Google Scholar 

  69. Sinha P, Poland J, Schnölzer M, Rabilloud T (2001) A new silver staining apparatus and procedure for matrix-assisted laser desorption/ionization-time of flight analysis of proteins after two-dimensional electrophoresis. Proteomics 1:835–840

    CAS  Google Scholar 

  70. Sumner LW, Wolf-Sumner B, White SP, Asirvatham VS (2002) Silver stain removal using H2O2 for enhanced peptide mass mapping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 16:160–168

    Google Scholar 

  71. Richert S, Luche S, Chevallet M, Van Dorsselaer A, Leize-Wagner E, Rabilloud T (2004) About the mechanism of interference of silver staining with peptide mass spectrometry. Proteomics 4:909–916

    CAS  Google Scholar 

  72. Guevara J, Johnston DA, Ramagali LS, Martin BA, Capetillo S, Rodriguez LV (1982) Quantitative aspects of silver deposition in proteins resolved in complex polyacrylamide gels. Electrophor 3:197–205

    CAS  Google Scholar 

  73. Lopez MF, Berggren K, Chernokalskaya E, Lazarev A, Robinson MH, Patton WF (2000) A comparison of silver stain and SYPRO Ruby Protein Gel Stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling. Electrophor 21:3673–3683

    CAS  Google Scholar 

  74. Mortz E, Krogh TN, Vorum H, Görg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1:1359–1363

    CAS  Google Scholar 

  75. Irie S, Sezaki M, Kato Y (1982) A faithful double stain of proteins in the polyacrylamide gels with coomassie blue and silver. Anal Biochem 126:350–354

    CAS  Google Scholar 

  76. Berson G (1983) Silver staining of proteins in polyacrylamide gels: increased sensitivity by a blue toning. Anal Biochem 134:230–234

    CAS  Google Scholar 

  77. Dzandu JK, Deh ME, Barratt DL, Wise GE (1984) Detection of erythrocyte membrane proteins, sialoglycoproteins, and lipids in the same polyacrylamide gel using a double-staining technique. Proc Natl Acad Sci USA 81:1733–1737

    CAS  Google Scholar 

  78. De Moreno MR, Smith JF, Smith RV (1985) Silver staining of proteins in polyacrylamide gels: Increased sensitivity through a combined coomassie blue-silver stain procedure. Anal Biochem 151:466–470

    Google Scholar 

  79. Ross M, Peters L (1990) Double staining to increase the sensitivity of protein detection in polyacrylamide gels. Biotech 9:532–533

    CAS  Google Scholar 

  80. Hänsler M, Appelt G, Rogos R (1991) Improved detection of human pancreatic proteins separated by two-dimensional isoelectric focusing/sodium dodecyl sulphate gel electrophoresis using a combined staining procedure. J Chromatogr-Biomedical Applications 563:63–71

    Google Scholar 

  81. Goldberg HA, Warner KJ (1997) The staining of acidic proteins on polyacrylamide gels: Enhanced sensitivity and stability of "Stains-All" staining in combination with silver nitrate. Anal Biochem 251:227–233

    CAS  Google Scholar 

  82. Zhou Z-D, Liu W-Y, Li M-Q (2002) Enhanced thiosulfate-silver staining of proteins in gels using coomassie blue and chromium. Biotech Lett 24:1561–1567

    CAS  Google Scholar 

  83. Lauber WM, Carroll JA, Dufield DR, Kiesel JR, Radabaugh MR, Malone JP (2001) Mass spectrometry compatibility of two-dimensional gel protein stains. Electrophor 22:906–918

    CAS  Google Scholar 

  84. Scheler C, Lamer S, Pan Z, Li X-P, Salnikow J, Jungblut P (1998) Peptide mass fingerprint sequence coverage from differently stained proteins on two-dimensional electrophoresis patterns by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Electrophor 19:918–927

    CAS  Google Scholar 

  85. Dion AS, Pomenti AA (1983) Ammoniacal silver staining of proteins: Mechanism of glutaraldehyde enhancement. Anal Biochem 129:490–496

    CAS  Google Scholar 

  86. Chevallet M, Diemer H, Luche S, Van Dorsselaer A, Rabilloud T, Leize-Wagner E (2006) Improved mass spectrometry compatibility is afforded by ammoniacal silver staining. Proteomics 6:2350–2354

    CAS  Google Scholar 

  87. Chevallet M, Luche S, Diemer H, Strub J-M, Van Dorsselaer A, Rabilloud T (2008) Sweet silver: a formaldehyde-free silver staining using aldoses as developing agents, with enhanced compatibility with mass spectrometry. Proteomics 8:4853–4861

    CAS  Google Scholar 

  88. Jin L-T, Hwang S-Y, Yoo G-S, Choi J-K (2004) Sensitive silver staining of protein in sodium dodecyl sulfate-polyacrylamide gels using an azo dye, calconcarboxylic acid, as a silver-ion sensitizer. Electropho 25:2494–2500

    CAS  Google Scholar 

  89. Jin L-T, Hwang S-Y, Yoo G-S, Choi J-K (2006) A mass spectrometry compatible silver staining method for protein incorporating a new silver sensitizer in sodium dodecyl sulfate-polyacrylamide electrophoresis gels. Proteomics 6:2334–2337

    CAS  Google Scholar 

  90. Jin L-T, Li X-K, Cong W-T, Hwang S-Y, Choi J-K (2008) Previsible silver staining of protein in electrophoresis gels with mass spectrometry compatibility. Anal Biochem 383:137–143

    CAS  Google Scholar 

  91. Tsai C-M, Frasch CE (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119

    CAS  Google Scholar 

  92. Igloi GL (1983) A silver stain for the detection of nanogram amounts of tRNA following two-dimensional electrophoresis. Anal Biochem 134:184–188

    CAS  Google Scholar 

  93. Guillemette JG, Lewis PN (1983) Detection of subnanogram quantities of DNA and RNA on native and denaturing polyacrylamide and agarose gels by silver staining. Electrophor 4:92–94

    CAS  Google Scholar 

  94. Paleologue A, Reboud JP, Reboud AM (1988) Selective silver-staining methods for RNA and proteins in the same polyacrylamide gels. Anal Biochem 169:234–238

    CAS  Google Scholar 

  95. Friedman RD (1982) Comparison of four different silver-staining techniques for salivary protein detection in alkaline polyacrylamide gels. Anal Biochem 126:346–349

    CAS  Google Scholar 

  96. Higgins RC, Dahmus ME (1979) Rapid visualization of protein bands in preparative SDS-polyacrylamide gels. Anal Biochem 93:257–260

    CAS  Google Scholar 

  97. LeBlanc GA, Cochrane BJ (1987) A rapid method for staining proteins in acrylamide gels. Anal Biochem 161:172–175

    CAS  Google Scholar 

  98. Lee C, Levin A, Branton D (1987) Copper staining: a five-minute protein stain for sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 166:308–312

    CAS  Google Scholar 

  99. Dzandu JK, Johnson JF, Wise GE (1988) Sodium dodecyl sulfate-gel electrophoresis: staining of polypeptides using heavy metal salts. Anal Biochem 174:157–167

    CAS  Google Scholar 

  100. Adams LD, Weaver KM (1990) Detection and recovery of proteins from gels following zinc chloride staining. Appl Theor Electrophor 1:279–282

    CAS  Google Scholar 

  101. Fernandez-Patron C, Castellanos L, Rodriguez P (1992) Reverse staining of sodium dodecyl sulfate polyacrylamide gels by imidazole-zinc salts: sensitive detection of unmodified proteins. Biotech 12:564–573

    CAS  Google Scholar 

  102. Ortiz ML, Calero M, Fernandez-Patron C, Castellanos L, Mendez E (1992) Imidazole-SDS-Zn reverse staining of proteins in gels containing or not SDS and microsequence of individual unmodified electroblotted proteins. FEBS Lett 296:300–304

    CAS  Google Scholar 

  103. Ferreras M, Gavilanes JG, Garciasegura JM (1993) A permanent Zn2+ reverse staining method for the detection and quantification of proteins in polyacrylamide gels. Anal Biochem 213:206–212

    CAS  Google Scholar 

  104. Fernandez-Patron C, Calero M, Collazo PR, Garcia JR, Madrazo J, Musacchio A, Soriano F, Estrada R, Frank R, Castellanos-Serra LR, Mendez E (1995) Protein reverse staining: high-efficiency microanalysis of unmodified proteins detected on electrophoresis gels. Anal Biochem 224:203–211

    CAS  Google Scholar 

  105. Castellanos-Serra LR, Fernandez-Patron C, Hardy E, Huerta V (1996) A procedure for protein elution from reverse-stained polyacrylamide gels applicable at the low picomole level: an alternative route to the preparation of low abundance proteins for microanalysis. Electrophor 17:1564–1572

    CAS  Google Scholar 

  106. Hardy E, Santana H, Sosa A, Hernández L, Fernández-Patrón C, Castellanos-Serra L (1996) Recovery of biologically active proteins detected with imidazole-sodium dodecyl sulfate-zinc (reverse stain) on sodium dodecyl sulfate gels. Anal Biochem 240:150–152

    CAS  Google Scholar 

  107. Castellanos-Serra LR, Fernandez-Patron C, Hardy E, Santana H, Huerta V (1997) High yield elution of proteins from sodium dodecyl sulfate–polyacrylamide gels at the low-picomole level. Application to N-terminal sequencing of a scarce protein and to in-solution biological activity analysis of on-gel renatured proteins. J Protein Chem 16:415–419

    CAS  Google Scholar 

  108. Matsui NM, Smith DM, Clauser KR, Fichmann J, Andrews LE, Sullivan CM, Burlingame AL, Epstein LB (1997) Immobilized pH gradient two-dimensional gel electrophoresis and mass spectrometric identification of cytokine-regulated proteins in ME-180 cervical carcinoma cells. Electrophor 18:409–417

    CAS  Google Scholar 

  109. Castellanos-Serra LR, Proenza W, Huerta V, Moritz RL, Simpson RJ (1999) Proteome analysis of polyacrylamide gel-separated proteins visualized by reversible negative staining using imidazole-zinc salts. Electrophor 20:732–737

    CAS  Google Scholar 

  110. Castellanos-Serra LR, Vallin A, Proenza W, Le Caer JP, Rossier J (2001) An optimized procedure for detection of proteins on carrier ampholyte isoelectric focusing and immobilized pH gradient gels with imidazole and zinc salts: Its application to the identification of isoelectric focusing separated isoforms by in-gel proteolysis and mass spectrometry analysis. Electrophor 22:1677–1685

    CAS  Google Scholar 

  111. Fernandez-Patron C, Castellanos-Serra L, Hardy E, Guerra M, Estevez E, Mehl E, Frank RW (1998) Understanding the mechanism of the zinc-ion stains of biomacromolecules in electrophoresis gels: generalization of the reverse-staining technique. Electrophor 19:2398–2406

    CAS  Google Scholar 

  112. Hardy E, Pupo E, Casalvilla R, Sosa AE, Trujillo LE, López E, Castellanos-Serra L (1996) Negative staining with zinc-imidazole of gel electrophoresis-separated nucleic acids. Electrophor 17:1537–1541

    CAS  Google Scholar 

  113. Hardy E, Pupo E, Castellanos-Serra L, Reyes J, Fernández-Patrón C (1997) Sensitive reverse staining of bacterial lipopolysaccharides on polyacrylamide gels by using zinc and imidazole salts. Anal Biochem 244:28–32

    CAS  Google Scholar 

  114. Bosshard HF, Datyner A (1977) The use of a new reactive dye for quantitation of prestained proteins on polyacrylamide gels. Anal Biochem 82:327–333

    CAS  Google Scholar 

  115. Telser A, Rovin B (1980) A specific stain for sulfhydryl groups in proteins after separation by polyacrylamide gel electrophoresis. Biochim Biophys Acta-Protein Structure 624:363–371

    CAS  Google Scholar 

  116. Choi J-K, Tak K-H, Jin L-T, Hwang S-Y, Kwon T-I, Yoo G-S (2002) Background-free, fast protein staining in sodium dodecyl sulfate polyacrylamide gel using counterion dyes, zincon and ethyl violet. Electrophor 23:4053–4059

    CAS  Google Scholar 

  117. Gorovsky MA, Carlson K, Rosenbaum JL (1970) Simple method for quantitive densitometry of polyacrylamide gels using fast green. Anal Biochem 35:359–370

    CAS  Google Scholar 

  118. Allen RE, Masak KC, McAllister PK (1980) Staining protein in isoelectric focusing gels with fast green. Anal Biochem 104:494–498

    CAS  Google Scholar 

  119. Selsted ME, Becker HW (1986) Eosin Y: A reversible stain for detecting electrophoretically resolved protein. Anal Biochem 155:270–274

    CAS  Google Scholar 

  120. Lin F, Fan W, Wise GE (1991) Eosin Y staining of proteins in polyacrylamide gels. Anal Biochem 196:279–283

    CAS  Google Scholar 

  121. Pal JK, Godbole D, Sharma K (2004) Staining of proteins on SDS polyacrylamide gels and on nitrocellulose membranes by Alta, a colour used as a cosmetic. J Biochem Biophys Meth 61:339–347

    CAS  Google Scholar 

  122. Hong HY, Choi JK, Yoo GS (1993) Detection of proteins on polyacrylamide gels using calconcarboxylic acid. Anal Biochem 214:96–99

    CAS  Google Scholar 

  123. Ali R, Sayeed SA, Khan AA (1995) A sensitive novel staining agent for the resolved proteins in PAGE. Intl J Pept Protein Res 45:97–99

    CAS  Google Scholar 

  124. Jung D-W, Yoo G-S, Choi J-K (1998) Mixed-dye staining method for protein detection in polyacrylamide gel electrophoresis using calconcarboxylic acid and rhodamine B. Electrophor 19:2412–2415

    CAS  Google Scholar 

  125. Jung D-W, Tak G-H, Lim J-W, Bae C-J, Kim G-Y, Yoo G-S, Choi J-K (1998) Detection of proteins in polyacrylamide gels using eriochrome black T and rhodamine B. Anal Biochem 263:118–120

    CAS  Google Scholar 

  126. Bickar D, Reid PD (1992) A high-affinity protein stain for western blots, tissue prints, and electrophoretic gels. Anal Biochem 203:109–115

    CAS  Google Scholar 

  127. Goldys EM (ed) (2009) Fluorescence Applications in Biotechnology and the Life Sciences. Hoboken, Wiley Blackwell

    Google Scholar 

  128. Beeley JA, Newman F, Wilson PHR, Shimmin IC (1996) Soldium dodecyl sulphate-polyacrylamide gel electrophoresis of human parotid salivary proteins: comparison of dansylation, coomassie blue R-250 and silver detection methods. Electrophor 17:505–506

    CAS  Google Scholar 

  129. Parkinson D, Redshaw JD (1984) Visible labeling of proteins for polyacrylamide gel electrophoresis with dabsyl chloride. Anal Biochem 141:121–126

    CAS  Google Scholar 

  130. Griffith IP (1972) Immediate visualization of proteins in dodecyl sulfate-polyacrylamide gels by prestaining with remazol dyes. Anal Biochem 46:402–412

    CAS  Google Scholar 

  131. Holmes KL, Lantz LM (2001) Protein labeling with fluorescent probes. In: Darzynkiewicz Z (ed) In Cytometry. Elsevier, Bethesda, pp 194–195

    Google Scholar 

  132. Shaw J, Rowlinson R, Nickson J, Stone T, Sweet A, Williams K, Tonge R (2003) Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3:1181–1195

    CAS  Google Scholar 

  133. Righetti PG, Castagna A, Antonucci F, Piubelli C, Cecconi D, Campostrini N, Antonioli P, Astner H, Hamdan M (2004) Critical survey of quantitative proteomics in two-dimensional electrophoretic approaches. J Chromatogr A 1051:3–17

    CAS  Google Scholar 

  134. Kelleher NL, Lin HY, Valaskovic GA, Aaserud DJ, Fridriksson EK, McLafferty FW (1999) Top down versus bottom up protein characterization by tandem high-resolution mass spectrometry. J Am Chem Soc 121:806–812

    CAS  Google Scholar 

  135. England K, Driscoll CO, Cotter TG (2006) ROS and protein oxidation in early stages of cytotoxic drug induced apoptosis. Free Radic Res 40:1124–1137

    CAS  Google Scholar 

  136. Van Baar BLM, Hulst AG, De Jong AL, Wils ERJ (2002) Characterisation of botulinum toxins type A and B, by matrix-assisted laser desorption ionisation and electrospray mass spectrometry. J Chromatogr A 970:95–115

    Google Scholar 

  137. Barger BO, White FC, Pace JL, Kemper DL, Ragland WL (1976) Estimation of molecular weight by polyacrylamide gel electrophoresis using heat stable fluorophors. Anal Biochem 70:327–335

    CAS  Google Scholar 

  138. Jackson P, Urwin VE, MacKay CD (1988) Rapid imaging, using a cooled charge-coupled-device, of fluorescent two-dimensional polyacrylamide gels produced by labelling proteins in the first-dimensional isoelectric focusing gel with the fluorophore 2-methoxy-2,4-diphenyl-3(2H)furanone. Electrophor 9:330–339

    CAS  Google Scholar 

  139. Weidekamm E, Wallach DFH, Flückiger R (1973) A new sensitive, rapid fluorescence technique for the determination of proteins in gel electrophoresis and in solution. Anal Biochem 54:102–114

    CAS  Google Scholar 

  140. Ragland WL, Pace JL, Kemper DL (1974) Fluorometric scanning of fluorescamine-labeled proteins in polyacrylamide gels. Anal Biochem 59:24–33

    CAS  Google Scholar 

  141. Jackowski G, Liew CC (1980) Fluorescamine staining of nonhistone chromatin proteins as revealed by two-dimensional polyacrylamide gel electrophoresis. Anal Biochem 102:321–325

    CAS  Google Scholar 

  142. Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396

    CAS  Google Scholar 

  143. Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ, Telford WG, Yue S, Liu J, Cheung C-Y, Chang W, Hirsch JD, Beechem JM, Haughland RP, Haugland RP (2003) Quantitative comparison of long-wavelength alexa fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J Histochem Cytochem 51:1699–1712

    CAS  Google Scholar 

  144. Corzett TH, Fodor IK, Choi MW, Walsworth VL, Chromy BA, Turteltaub KW, McCutchen-Maloney SL (2006) Statistical analysis of the experimental variation in the proteomic characterization of human plasma by two-dimensional difference gel electrophoresis. J Prot Res 5:2611–2619

    CAS  Google Scholar 

  145. Zhou G, Li H, DeCamp D, Chen S, Shu H, Gong Y, Flaig M, Gillespie JW, Hu N, Taylor PR, Emmert-Buck MR, Liotta LA, Petricoin EF III, Zhao Y (2002) 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics 1:117–123

    CAS  Google Scholar 

  146. Tyagarajan K, Pretzer E, Wiktorowicz JE (2003) Thiol-reactive dyes for fluorescence labeling of proteomic samples. Electrophor 24:2348–2358

    CAS  Google Scholar 

  147. Chan H-L, Gharbi S, Gaffney PR, Cramer R, Waterfield MD, Timms JF (2005) Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis. Proteomics 5:2908–2926

    CAS  Google Scholar 

  148. Pretzer E, Wiktorowicz JE (2008) Saturation fluorescence labeling of proteins for proteomic analyses. Anal Biochem 374:250–262

    CAS  Google Scholar 

  149. O'Keefe DO (1994) Quantitative electrophoretic analysis of proteins labeled with monobromobimane. Anal Biochem 222:86–94

    Google Scholar 

  150. Urwin VE, Jackson P (1993) Two-dimensional polyacrylamide gel electrophoresis of proteins labeled with the fluorophore monobromobimane prior to first-dimensional isoelectric focusing: Imaging of the fluorescent protein spot patterns using a cooled charge-coupled device. Anal Biochem 209:57–62

    CAS  Google Scholar 

  151. Swatton JE, Prabakaran S, Karp NA, Lilley KS, Bahn S (2004) Protein profiling of human postmortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE). Mol Psychiatry 9:128–143

    CAS  Google Scholar 

  152. Sitek B, Lüttges J, Marcus K, Klöppel G, Schmiegel W, Meyer HE, Hahn SA, Stühler K (2005) Application of fluorescence difference gel electrophoresis saturation labelling for the analysis of microdissected precursor lesions of pancreatic ductal adenocarcinoma. Proteomics 5:2665–2679

    CAS  Google Scholar 

  153. Riederer IM, Riederer BM (2007) Differential protein labeling with thiol-reactive infrared DY-680 and DY-780 maleimides and analysis by two-dimensional gel electrophoresis. Proteomics 7:1753–1756

    CAS  Google Scholar 

  154. Dietz L, Bosque A, Pankert P, Ohnesorge S, Merz P, Anel A, Schnölzer M, Thierse H-J (2009) Quantitative DY-maleimide-based proteomic 2-DE-labeling strategies using human skin proteins. Proteomics 9:4298–4308

    CAS  Google Scholar 

  155. Tsolakos N, Techanukul T, Wallington A, Zhao Y, Jones C, Nagy J, Wheeler JX (2009) Comparison of two combinations of cyanine dyes for prelabelling and gel electrophoresis. Proteomics 9:1727–1730

    CAS  Google Scholar 

  156. Nishihara JC, Champion KM (2002) Quantitative evaluation of proteins in one- and two-dimensional polyacrylamide gels using a fluorescent stain. Electrophor 23:2203–2215

    CAS  Google Scholar 

  157. Cong W-T, Hwang S-Y, Jin L-T, Choi J-K (2008) Improved conditions for fluorescent staining of proteins with 4, 4′-dianilino-1, 1′-binaphthyl-5, 5′-disulfonic acid in SDS-PAGE. Electrophor 29:4487–4494

    CAS  Google Scholar 

  158. Cong W-T, Hwang S-Y, Jin L-T, Choi J-K (2008) Sensitive fluorescent staining for proteomic analysis of proteins in 1-D and 2-D SDS-PAGE and its comparison with SYPRO Ruby by PMF. Electrophor 29:4304–4315

    CAS  Google Scholar 

  159. Ball MS, Karuso P (2007) Mass spectral compatibility of four proteomics stains. J Proteome Res 6:4313–4320

    CAS  Google Scholar 

  160. Kreig RC, Paweletz CP, Liotta LA, Petricon EF III (2003) Dilution of protein gel stain results in retention of staining capacity. Biotech 35:376–378

    Google Scholar 

  161. Ahnert N, Patton WF, Schulenberg B (2004) Optimized conditions for diluting and reusing a fluorescent protein gel stain. Electrophor 25:2506–2510

    CAS  Google Scholar 

  162. Rabilloud T, Strub J-M, Luche S, Girardet JL, van Dorsselaer A, Lunardi J (2000) Ruthenium II tris (bathophenanthroline disulfonate), a powerful fluorescent stain for detection of proteins in gel with minimal interference in subsequent mass spectrometry analysis. Proteome 1:1–14

    Google Scholar 

  163. Rabilloud T, Strub J-M, Luche S, Van Dorsselaer A, Lunardi J (2001) A comparison between Sypro Ruby and ruthenium II tris (bathophenanthroline disulfonate) as fluorescent stains for protein detection in gels. Proteomics 1:699–704

    CAS  Google Scholar 

  164. Berggren KN, Schulenberg B, Lopez MF, Steinberg TH, Bogdanova A, Smejkal G, Wang A, Patton WF (2002) An improved formulation of SYPRO Ruby protein gel stain: comparison with the original formulation and with a ruthenium II tris (bathophenanthroline disulfonate) formulation. Proteomics 2:486–498

    CAS  Google Scholar 

  165. Francis F, Gerkens P, Harmel N, Mazzucchelli G, De Pauw E, Haubruge E (2006) Proteomics in Myzus persicae: effect of aphid host plant switch. Insect Biochem Mol Biol 36:219–227

    CAS  Google Scholar 

  166. Gerber IB, Laukens K, Witters E, Dubery IA (2006) Lipopolysaccharide-responsive phosphoproteins in Nicotiana tabacum cells. Plant Physiol Biochem 44:369–379

    CAS  Google Scholar 

  167. Rinnerthaler M, Jarolim S, Heeren G, Palle E, Perju S, Klinger H, Bogengruber E, Madeo F, Braun RJ, Breitenbach-Koller L, Breitenbach M, Laun P (2006) MMI1 (YKL056c, TMA19), the yeast orthologue of the translationally controlled tumor protein (TCTP) has apoptotic functions and interacts with both microtubules and mitochondria. Biochim Biophys Acta-Bioenergetics 1757:631–638

    CAS  Google Scholar 

  168. Berger K, Wissmann D, Ihling C, Kalkhof S, Beck-Sickinger A, Sinz A, Paschke R, Führer D (2004) Quantitative proteome analysis in benign thyroid nodular disease using the fluorescent ruthenium II tris(bathophenanthroline disulfonate) stain. Mol Cell Endocrinol 227:21–30

    CAS  Google Scholar 

  169. Krause K, Karger S, Schierhorn A, Poncin S, Many M-C, Fuhrer D (2007) Proteomic profiling of cold thyroid nodules. Endocrinol 148:1754–1763

    CAS  Google Scholar 

  170. Witzel K, Surabhi G-K, Jyothsnakumari G, Sudhakar C, Matros A, Mock H-P (2007) Quantitative proteome analysis of barley seeds using ruthenium(II)-tris-(bathophenanthroline-disulphonate) staining. J Proteome Res 6:1325–1333

    CAS  Google Scholar 

  171. Tokarski C, Cren-Olivé C, Fillet M, Rolando C (2006) High-sensitivity staining of proteins for one- and two-dimensional gel electrophoresis using post migration covalent staining with a ruthenium fluorophore. Electrophor 27:1407–1416

    CAS  Google Scholar 

  172. Bell PJL, Karuso P (2003) Epicocconone, a novel fluorescent compound from the fungus Epicoccum nigrum. J Am Chem Soc 125:9304–9305

    CAS  Google Scholar 

  173. Mackintosh JA, Choi H-Y, Bae S-H, Veal DA, Bell PJ, Ferrari BC, Van Dyk DD, Verrills NM, Paik Y-K, Karuso P (2003) A fluorescent natural product for ultra sensitive detection of proteins in one-dimensional and two-dimensional gel electrophoresis. Proteomics 3:2273–2288

    CAS  Google Scholar 

  174. Svensson E, Hedberg JJ, Malmport E, Bjellqvist B (2006) Fluorescent in-gel protein detection by regulating the pH during staining. Anal Biochem 355:304–306

    CAS  Google Scholar 

  175. Tannu NS, Sanchez-Brambila G, Kirby P, Andacht TM (2006) Effect of staining reagent on peptide mass fingerprinting from in-gel trypsin digestions: a comparison of SyproRuby and DeepPurple. Electrophor 27:3136–3143

    CAS  Google Scholar 

  176. Volkova K, Kovalska V, Yarmoluk S (2007) Modern techniques for protein detection on polyacrylamide gels: problems arising from the use of dyes of undisclosed structures for scientific purposes. Biotech Histochem 82:201–208

    CAS  Google Scholar 

  177. Nock CM, Ball MS, White IR, Skehel JM, Bill L, Karuso P (2008) Mass spectrometric compatibility of Deep Purple and SYPRO Ruby total protein stains for high-throughput proteomics using large-format two-dimensional gel electrophoresis. Rapid Commun Mass Spectrom 22:881–886

    CAS  Google Scholar 

  178. Smejkal GB, Robinson MH, Lazarev A (2004) Comparison of fluorescent stains: relative photostability and differential staining of proteins in two-dimensional gels. Electrophor 25:2511–2519

    CAS  Google Scholar 

  179. Coghlan DR, Mackintosh JA, Karuso P (2005) Mechanism of reversible fluorescent staining of protein with epicocconone. Org Lett 7:2401–2404

    CAS  Google Scholar 

  180. Kang C, Kim HJ, Kang D, Jung DY, Suh M (2003) Highly sensitive and simple fluorescence staining of proteins in sodium dodecyl sulfate-polyacrylamide-based gels by using hydrophobic tail-mediated enhancement of fluorescein luminescence. Electrophor 24:3297–3304

    CAS  Google Scholar 

  181. Hartman BK, Udenfriend S (1969) A method for immediate visualization of proteins in acrylamide gels and its use for preparation of antibodies to enzymes. Anal Biochem 30:391–394

    CAS  Google Scholar 

  182. Daban J-R, Aragay AM (1984) Rapid fluorescent staining of histones in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 138:223–228

    CAS  Google Scholar 

  183. Vincent A, Scherrer K (1979) A rapid and sensitive method for detection of proteins in polyacrylamide SDS gels: Staining with ethidium bromide. Mol Biol Rep 5:209–214

    CAS  Google Scholar 

  184. Horowitz PM, Bowman S (1987) Ion-enhanced fluorescence staining of sodium dodecyl sulfate-polyacrylamide gels using bis(8-p-toluidino-1-naphthalenesulfonate). Anal Biochem 165:430–434

    CAS  Google Scholar 

  185. Kazmin D, Edwards RA, Turner RJ, Larson E, Starkey J (2002) Visualization of proteins in acrylamide gels using ultraviolet illumination. Anal Biochem 301:91–96

    CAS  Google Scholar 

  186. Daban J-R, Bartolomé S, Samsó M (1991) Use of the hydrophobic probe Nile red for the fluorescent staining of protein bands in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 199:169–174

    CAS  Google Scholar 

  187. Suzuki Y, Yokoyama K, Namatame I (2006) Rapid and easy protein staining for SDS-PAGE using an intramolecular charge transfer-based fluorescent reagent. Electrophor 27:3332–3337

    CAS  Google Scholar 

  188. Dvortsov IA, Lunina NA, Chekanovskaya LA, Shedova EN, Gening LV, Velikodvorskaya GA (2006) Ethidium bromide is good not only for staining of nucleic acids but also for staining of proteins after polyacrylamide gel soaking in trichloroacetic acid solution. Anal Biochem 353:293–295

    CAS  Google Scholar 

  189. Pluder F, Beck-Sickinger AG (2007) One-step procedure for staining of proteins with ruthenium II tris (bathophenanthroline disulfonate). Anal Biochem 361:299–301

    CAS  Google Scholar 

  190. Cong W-T, Jin L-T, Hwang S-Y, Choi J-K (2008) Fast fluorescent staining of protein in sodium dodecyl sulfate polyacrylamide gels by palmatine. Electrophor 29:417–423

    CAS  Google Scholar 

  191. Leibowitz MJ, Wang RW (1984) Visualization and elution of unstained proteins from polyacrylamide gels. Anal Biochem 137:161–163

    CAS  Google Scholar 

  192. Yamamoto H, Nakatani M, Shinya K, Kim B-H, Kakuno T (1990) Ultraviolet imaging densitometry of unstained gels for two-dimensional electrophoresis. Anal Biochem 191:58–64

    CAS  Google Scholar 

  193. Koutny LB, Yeung ES (1993) On-line detection of proteins in gel electrophoresis by ultraviolet absorption and by native fluorescence utilizing a charge-coupled device imaging system. Anal Chem 65:183–187

    CAS  Google Scholar 

  194. Roegener J, Lutter P, Reinhardt R, Bluggel M, Meyer HE, Anselmetti D (2002) Ultrasensitive detection of unstained proteins in acrylamide gels by native UV fluorescence. Anal Chem 75:157–159

    Google Scholar 

  195. Ladner CL, Yang J, Turner RJ, Edwards RA (2004) Visible fluorescent detection of proteins in polyacrylamide gels without staining. Anal Biochem 326:13–20

    CAS  Google Scholar 

  196. Sluszny C, Yeung ES (2004) One- and two-dimensional miniaturized electrophoresis of proteins with native fluorescence detection. Anal Chem 76:1359–1365

    CAS  Google Scholar 

  197. Zhang H, Yeung ES (2006) Ultrasensitive native fluorescence detection of proteins with miniaturized polyacrylamide gel electrophoresis by laser side-entry excitation. Electrophor 27:3609–3618

    CAS  Google Scholar 

  198. Dahlberg AE, Dingman CW, Peacock AC (1969) Electrophoretic characterization of bacterial polyribosomes in agarose-acrylamide composite gels. J Mol Biol 41:139–146

    CAS  Google Scholar 

  199. Green MR, Pastewka JV, Peacock AC (1973) Differential staining of phosphoproteins on polyacrylamide gels with a cationic carbocyanine dye. Anal Biochem 56:43–51

    CAS  Google Scholar 

  200. Green MR, Pastewka JV (1975) Identification of sialic acid-rich glycoproteins on polyacrylamide gels. Anal Biochem 65:66–72

    CAS  Google Scholar 

  201. King LE, Morrison M (1976) The visualization of human erythrocyte membrane proteins and glycoproteins in SDS polyacrylamide gels employing a single staining procedure. Anal Biochem 71:223–230

    CAS  Google Scholar 

  202. Campbell K, MacLennan D, Jorgensen A (1983) Staining of the Ca2+-binding proteins, calsequestrin, calmodulin, troponin C, and S-100, with the cationic carbocyanine dye "Stains-all". J Biol Chem 258:11267–11273

    CAS  Google Scholar 

  203. Keyser JW (1964) Staining of serum glycoproteins after electrophoretic separation in acrylamide gels. Anal Biochem 9:249–252

    CAS  Google Scholar 

  204. Zacharius RM, Zell TE, Morrison JH, Woodlock JJ (1969) Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem 30:148–152

    CAS  Google Scholar 

  205. Matthieu J-M, Quarles RH (1973) Quantitative scanning of glycoproteins on polyacrylamide gels stained with periodic acid-Schiff reagent (PAS). Anal Biochem 55:313–316

    CAS  Google Scholar 

  206. Doerner KC, White BA (1990) Detection of glycoproteins separated by nondenaturing polyacrylamide gel electrophoresis using the periodic acid-Schiff stain. Anal Biochem 187:147–150

    CAS  Google Scholar 

  207. Wardi AH, Michos GA (1972) Alcian blue staining of glycoproteins in acrylamide disc electrophoresis. Anal Biochem 49:607–609

    CAS  Google Scholar 

  208. Eckhardt AE, Hayes CE, Goldstein IJ (1976) A sensitive fluorescent method for the detection of glycoproteins in polyacrylamide gels. Anal Biochem 73:192–197

    CAS  Google Scholar 

  209. Furlan M, Perret BA, Beck EA (1979) Staining of glycoproteins in polyacrylamide and agarose gels with fluorescent lectins. Anal Biochem 96:208–214

    CAS  Google Scholar 

  210. Muñoz G, Marshall S, Cabrera M, Horvat A (1988) Enhanced detection of glycoproteins in polyacrylamide gels. Anal Biochem 170:491–494

    Google Scholar 

  211. Racusen D (1979) Glycoprotein detection in polyacrylamide gel with thymol and sulfuric acid. Anal Biochem 99:474–476

    CAS  Google Scholar 

  212. Steinberg TH, Top KPO, Berggren KN, Kemper C, Jones L, Diwu Z, Haugland RP, Patton WF (2001) Rapid and simple single nanogram detection of glycoproteins in polyacrylamide gels and on electroblots. Proteomics 1:841–855

    CAS  Google Scholar 

  213. Hart C, Schulenberg B, Steinberg TH, Leung W-Y, Patton WF (2003) Detection of glycoproteins in polyacylamide gels and on electroblots using Pro-Q Emerald 488 dye, a fluorescent periodate schiff-base stain. Electrophor 24:588–598

    CAS  Google Scholar 

  214. Misenheimer TM, Hahr AJ, Harms AC, Annis DS, Mosher DF (2001) Disulfide connectivity of recombinant C-terminal region of human thrombospondin 2. J Biol Chem 276:45882–45887

    CAS  Google Scholar 

  215. Pío R, Martínez A, Unsworth EJ, Kowalak JA, Bengoechea JA, Zipfel PF, Elsasser TH, Cuttitta F (2001) Complement factor H is a serum-binding protein for adrenomedullin, and the resulting complex modulates the bioactivities of both partners. J Biol Chem 276:12292–12300

    Google Scholar 

  216. Khidekel N, Arndt S, Lamarre-Vincent N, Lippert A, Poulin-Kerstien KG, Ramakrishnan B, Qasba PK, Hsieh-Wilson LC (2003) A chemoenzymatic approach toward the rapid and sensitive detection of O-GlcNAc posttranslational modifications. J Am Chem Soc 125:16162–16163

    CAS  Google Scholar 

  217. Clark PM, Dweck JF, Mason DE, Hart CR, Buck SB, Peters EC, Agnew BJ, Hsieh-Wilson LC (2008) Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins. J Am Chem Soc 130:11576–11577

    CAS  Google Scholar 

  218. Patton WF (2002) Detection technologies in proteome analysis. J Chromatogr B Anal Technol Biomed Life Sci 771:3–31

    CAS  Google Scholar 

  219. Cutting JA, Roth TF (1973) Staining of Phospho-proteins on acrylamide gel electropherograms. Anal Biochem 54:386–394

    CAS  Google Scholar 

  220. Hegenauer J, Ripley L, Nace G (1977) Staining acidic phosphoproteins (phosvitin) in electrophoretic gels. Anal Biochem 78:308–311

    CAS  Google Scholar 

  221. Steinberg TH, Agnew BJ, Gee KR, Leung W-Y, Goodman T, Schulenberg B, Hendrickson J, Beechem JM, Haugland RP, Patton WF (2003) Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics 3:1128–1144

    CAS  Google Scholar 

  222. Schulenberg B, Goodman TN, Aggeler R, Capaldi RA, Patton WF (2004) Characterization of dynamic and steady-state protein phosphorylation using a fluorescent phosphoprotein gel stain and mass spectrometry. Electrophor 25:2526–2532

    CAS  Google Scholar 

  223. Agrawal GK, Thelen JJ (2005) Development of a simplified, economical polyacrylamide gel staining protocol for phosphoproteins. Proteomics 5:4684–4688

    CAS  Google Scholar 

  224. Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757

    CAS  Google Scholar 

  225. Yamada S, Nakamura H, Kinoshita E, Kinoshita-Kikuta E, Koike T, Shiro Y (2007) Separation of a phosphorylated histidine protein using phosphate affinity polyacrylamide gel electrophoresis. Anal Biochem 360:160–162

    CAS  Google Scholar 

  226. Barbieri CM, Stock AM (2008) Universally applicable methods for monitoring response regulator aspartate phosphorylation both in vitro and in vivo using Phos-tag-based reagents. Anal Biochem 376:73–82

    CAS  Google Scholar 

  227. Chung MC-M (1985) A specific iron stain for iron-binding proteins in polyacrylamide gels: application to transferrin and lactoferrin. Anal Biochem 148:498–502

    CAS  Google Scholar 

  228. Leong LM, Tan BH, Ho KK (1992) A specific stain for the detection of nonheme iron proteins in polyacrylamide gels. Anal Biochem 207:317–320

    CAS  Google Scholar 

  229. Kuo C-F, Fridovich I (1988) A stain for iron-containing proteins sensitive to nanogram levels of iron. Anal Biochem 170:183–185

    CAS  Google Scholar 

  230. Frings CS, Foster LB, Cohen PS (1971) Electrophoretic separation of serum lipoproteins in polyacrylamide gel. Clin Chem 17:111–114

    CAS  Google Scholar 

  231. Muniz N (1977) Measurement of plasma lipoproteins by electrophoresis on polyacrylamide gel. Clin Chem 23:1826–1833

    CAS  Google Scholar 

  232. McNamara JR, Campos H, Adolphson JL, Ordovas JM, Wilson PW, Albers JJ, Usher DC, Schaefer EJ (1989) Screening for lipoprotein[a] elevations in plasma and assessment of size heterogeneity using gradient gel electrophoresis. J Lipid Res 30:747–755

    CAS  Google Scholar 

  233. Rainwater DL, Moore PH Jr, Shelledy WR, Dyer TD, Slifer SH (1997) Characterization of a composite gradient gel for the electrophoretic separation of lipoproteins. J Lipid Res 38:1261–1266

    CAS  Google Scholar 

  234. Jencks WP, Durrum EL, Jetton MR (1955) Paper electrophoresis as a quantitative method: the staining of serum lipoproteins. J Clin Investig 34:1437–1448

    CAS  Google Scholar 

  235. Noble RP (1968) Electrophoretic separation of plasma lipoproteins in agarose gel. J Lipid Res 9:693–700

    CAS  Google Scholar 

  236. Smejkal GB, Hoff HF (1994) Filipin staining of lipoproteins in polyacrylamide gels: sensitivity and photobleaching of the fluorophore and its use in a double staining method. Electrophor 15:922–925

    CAS  Google Scholar 

  237. Williams NK, Prosselkov P, Liepinsh E, Line I, Sharipo A, Littler DR, Curmi PMG, Otting G, Dixon NE (2002) In vivo protein cyclization promoted by a circularly permuted Synechocystis sp. PCC6803 Dna D mini-intein. J Biol Chem 277:7790–7798

    Google Scholar 

  238. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272

    CAS  Google Scholar 

  239. Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124:6063–6076

    CAS  Google Scholar 

  240. Keller PJ, Cohen E, Hollinshead Beeley JA (1968) Canine pancreatic ribosomes: II. The protein moiety. J Biol Chem 243:1271–1276

    CAS  Google Scholar 

  241. Lawrence JM, Hedwig EH, Grant DR (1970) Analysis of wheat flour proteins by polyacrylamide gel electrophoresis. Cereal Chem 47:98–109

    Google Scholar 

  242. Bertolini MJ, Tankersley DL, Schroeder DD (1976) Staining and destaining polyacrylamide gels: a comparison of coomassie blue and fast green protein dyes. Anal Biochem 71:6–13

    CAS  Google Scholar 

  243. Castellanos-Serra L, Hardy E (2001) Detection of biomolecules in electrophoresis gels with salts of imidazole and zinc II: a decade of research. Electrophor 22:864–873

    CAS  Google Scholar 

  244. Talbot DN, Yphantis DA (1971) Fluorescent monitoring of SDS gel electrophoresis. Anal Biochem 44:246–253

    CAS  Google Scholar 

  245. Eng PR, Parkes CO (1974) SDS electrophoresis of fluorescamine-labeled proteins. Anal Biochem 59:323–325

    CAS  Google Scholar 

  246. Aragay AM, Diaz P, Daban J-R (1985) A fluorescent method for the rapid staining and quantitation of proteins in sodium dodecyl sulfate-polyacrylamide gels. Electrophor 6:527–531

    CAS  Google Scholar 

  247. Alba FJ, Bermudez A, Bartolomé S, Daban J-R (1996) Detection of five nano-grams of protein by two-minute nile red staining of unfixed SDS gels. Biotech 21:625–626

    CAS  Google Scholar 

  248. Ünlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophor 18:2071–2077

    Google Scholar 

  249. Berggren K, Steinberg TH, Lauber WM, Carroll JA, Lopez MF, Chernokalskaya E, Zieske L, Diwu Z, Haugland RP, Patton WF (1999) A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal Biochem 276:129–143

    CAS  Google Scholar 

  250. Luo L-D, Wirth PJ (1993) Consecutive silver staining and autoradiography of 35S and 32P-labeled cellular proteins: application for the analysis of signal transducing pathways. Electrophor 14:127–136

    CAS  Google Scholar 

  251. Kemper C, Steinberg TH, Jones L, Patton WF (2001) Simultaneous, two-color fluorescence detection of total protein profiles and beta-glucuronidase activity in polyacrylamide gel. Electrophor 22:970–976

    CAS  Google Scholar 

  252. Berggren KN, Chernokalskaya E, Lopez MF, Beechem JM, Patton WF (2001) Comparison of three different fluorescent visualization strategies for detecting Escherichia coli ATP synthase subunits after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Proteomics 1:54–65

    CAS  Google Scholar 

  253. Evans CA, Tonge R, Blinco D, Pierce A, Shaw J, Lu Y, Hamzah HG, Gray A, Downes CP, Gaskell SJ, Spooncer E, Whetton AD (2004) Comparative proteomics of primitive hematopoietic cell populations reveals differences in expression of proteins regulating motility. Blood 103:3751–3759

    CAS  Google Scholar 

  254. Wheelock ÅM, Morin D, Bartosiewicz M, Buckpitt AR (2006) Use of a fluorescent internal protein standard to achieve quantitative two-dimensional gel electrophoresis. Proteomics 6:1385–1398

    CAS  Google Scholar 

  255. Forsen E, Abadal G, Ghatnekar-Nilsson S, Teva J, Verd J, Sandberg R, Svendsen W, Perez-Murano F, Esteve J, Figueras E, Campabadal F, Montelius L, Barniol N, Boisen A (2005) Ultrasensitive mass sensor fully integrated with complementary metal-oxide-semiconductor circuitry. App Phys Lett 87:043507

    Google Scholar 

  256. Berth M, Moser FM, Kolbe M, Bernhardt J (2007) The state of the art in the analysis of two-dimensional gel electrophoresis images. App Microbiol Biotechnol 76:1223–1243

    CAS  Google Scholar 

  257. Millioni R, Miuzzo M, Sbrignadello S, Murphy E, Puricelli L, Tura A, Bertacco E, Rattazzi M, Iori E, Tessari P (2010) Delta2D and proteomweaver: performance evaluation of two different approaches for 2-DE analysis. Electrophor 8:1311–1317

    Google Scholar 

  258. Yergey AL, Coorssen JR, Backlund PS, Blank PS, Humphrey GA, Zimmerberg J, Campbell JM, Vestal ML (2002) De novo sequencing of peptides using MALDI/TOF-TOF. J Am Soc Mass Spectrom 13:784–791

    CAS  Google Scholar 

  259. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    CAS  Google Scholar 

  260. Wysocki VH, Resing KA, Zhang Q, Cheng G (2005) Mass spectrometry of peptides and proteins. Methods 35:211–222

    CAS  Google Scholar 

  261. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    CAS  Google Scholar 

  262. Han X, Aslanian A, Yates Iii JR (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490

    CAS  Google Scholar 

  263. Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–296

    CAS  Google Scholar 

  264. Bantscheff M, Boesche M, Eberhard D, Matthieson T, Sweetman G, Kuster B (2008) Robust and sensitive itraq quantification on an ltq orbitrap mass spectrometer. Mol Cell Proteomics 7:1702–1713

    CAS  Google Scholar 

  265. De Godoy L, Olsen J, De Souza G, Li G, Mortensen P, Mann M (2006) Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol 7:R50

    Google Scholar 

  266. Kierszenbaum F, Levison SA, Dandliker WB (1969) Fractionation of fluorescent-labeled proteins according to the degree of labeling. Anal Biochem 28:563–572

    CAS  Google Scholar 

  267. Karp NA, Feret R, Rubtsov DV, Lilley KS (2008) Comparison of DIGE and post-stained gel electrophoresis with both traditional and SameSpots analysis for quantitative proteomics. Proteomics 8:948–960

    CAS  Google Scholar 

  268. Martinez JLC. International Congress on Analytical Proteomics. 2011. http://sing.ei.uvigo.es/ICAP/

Download references

Acknowledgements

The authors thank Dr. R.H. Butt for insightful discussions during the writing of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens R. Coorssen.

Additional information

Victoria J. Gauci and Elise P. Wright contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauci, V.J., Wright, E.P. & Coorssen, J.R. Quantitative proteomics: assessing the spectrum of in-gel protein detection methods. J Chem Biol 4, 3–29 (2011). https://doi.org/10.1007/s12154-010-0043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-010-0043-5

Keywords

Navigation