Skip to main content
Log in

Copper (II) sulfate charring for high sensitivity on-plate fluorescent detection of lipids and sterols: quantitative analyses of the composition of functional secretory vesicles

  • Short Communication
  • Published:
Journal of Chemical Biology

Abstract

A wide range of methods exist for the on-plate detection of lipids resolved by thin layer chromatography. Fluorescence generally offers improvements in sensitivity over methods that use colorimetric or simple densitometric detection. In this paper, we report that a classic cupric sulfate charring protocol produces a fluorescent signal that sensitively and quantitatively detects a wide range of phospholipids, neutral lipids, and sterols after automated, multi-development high performance thin layer chromatography. The measured lower limits of detection and quantification, respectively, were, on average, 80 and 210 pmol for phospholipids and 43 fmol and 8.7 pmol for sterols. The simple, inexpensive, and highly sensitive approach described here was used to quantitatively analyze the lipid and sterol composition of sea urchin cortical vesicles, a stage-specific model system used to study the mechanism of regulated membrane fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CV:

cortical vesicles

DAPC:

diacylphosphatidylcholine

MAG:

monoacylglycerol

DAG:

diacylglycerol

TAG:

triacylglycerol

DAPE:

diacylphosphatidylethanolamine

DAPS:

diacylphosphatidylserine

DAPI:

diacylphosphatidylinositol

DAPA:

diacylphosphatidic acid

DAPG:

diacylphosphatidylglycerol

FA:

fatty acids

CE:

cholesterol esters

SM:

sphingomyelin

CER:

ceramides

CA:

cardiolipin

HPTLC:

High-performance thin layer chromatography

References

  1. Fewster ME, Burns BJ, Mead JF (1969) Quantitative densitometric thin-layer chromatography of lipids using copper acetate reagent. J Chromatogr 43:120–126

    Article  CAS  Google Scholar 

  2. Touchstone JC, Levin SS, Dobbins MF, Matthews L, Beers PC, Gabbe SG (1983) (3-sn-Phosphatidyl)cholines (lecithins) in amniotic fluid. Clin Chem 29:1951–1954

    CAS  Google Scholar 

  3. Entezami AA, Venables BJ, Daugherty KE (1987) Analysis of lipids by one-dimensional thin-layer chromatography. J Chromatogr 387:323–331

    Article  CAS  Google Scholar 

  4. Baron CB, Coburn RF (1984) Comparison of two copper reagents for detection of saturated and unsaturated neutral lipids by charring densitometry. J Liquid Chromatogr 7:2793–2801

    Article  CAS  Google Scholar 

  5. Touchstone JC, Levin SS, Dobbins MF, Carter PJ (1981) Differentiation of saturated and unsaturated phospholipids on thin layer chromatograms. J High Resolut Chromatogr Commun 4:423–424

    Article  CAS  Google Scholar 

  6. Wang X, Xu L, Zheng L (1994) Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. J Biol Chem 269:20312–20317

    CAS  Google Scholar 

  7. Moe MK, Anderssen T, Strom MB, Jensen E (2005) Total structure characterization of unsaturated acidic phospholipids provided by vicinal di-hydroxylation of fatty acid double bonds and negative electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 16:46–59

    Article  CAS  Google Scholar 

  8. Flieger A, Gong S, Faigle M, Northoff H, Neumeister B (2001) In vitro secretion kinetics of proteins from Legionella pneumophila in comparison to proteins from non-pneumophila species. Microbiology 147:3127–3134

    CAS  Google Scholar 

  9. Bitsanis D, Crawford MA, Moodley T, Holmsen H, Ghebremeskel K, Djahanbakhch O (2005) Arachidonic acid predominates in the membrane phosphoglycerides of the early and term human placenta. J Nutr 135:2566–2571

    CAS  Google Scholar 

  10. Kirchner JG, Miller JM, Keller GJ (1951) Separation and identification of some terpenes by new chromatographic technique. Anal Chem 23:420–425

    Article  CAS  Google Scholar 

  11. Miller JM, Kirchner JG (1954) Apparatus for preparation of chromatostrips. Anal Chem 26:2002

    Article  CAS  Google Scholar 

  12. Fowler SD, Brown WJ, Warfel J, Greenspan P (1987) Use of Nile Red for the rapid in situ quantitation of lipids on thin-layer chromatograms. J Lipid Res 28:1225–1232

    CAS  Google Scholar 

  13. Muthing J, Radloff M (1998) Nanogram detection of phospholipids on thin-layer chromatograms. Anal Biochem 257:67–70

    Article  CAS  Google Scholar 

  14. Hyslop PA, York DA (1980) The use of 1,6-diphenylhexatriene to detect lipids on thin-layer chromatograms. Anal Biochem 101:75–77

    Article  CAS  Google Scholar 

  15. Coorssen JR, Blank PS, Tahara M, Zimmerberg J (1998) Biochemical and functional studies of cortical vesicle fusion: the SNARE complex and Ca2+ sensitivity. J Cell Biol 143:1845–1857

    Article  CAS  Google Scholar 

  16. Coorssen JR, Blank PS, Albertorio F, Bezrukov L, Kolosova I, Chen X, Backlund PS Jr, Zimmerberg J (2003) Regulated secretion: SNARE density, vesicle fusion and calcium dependence. J Cell Sci 116:2087–2097

    Article  CAS  Google Scholar 

  17. Vacquier VD (1975) The isolation of intact cortical granules from sea urchin eggs: calcium ions trigger granule discharge. Dev Biol 43:62–74

    Article  CAS  Google Scholar 

  18. Zimmerberg J, Blank PS, Kolosova I, Cho MS, Tahara M, Coorssen JR (2000) A stage-specific preparation to study the Ca(2+)-triggered fusion steps of exocytosis: rationale and perspectives. Biochimie 82:303–314

    Article  CAS  Google Scholar 

  19. Vogel SS, Delaney K, Zimmerberg J (1991) The sea urchin cortical reaction. A model system for studying the final steps of calcium-triggered vesicle fusion. Ann NY Acad Sci 635:35–44

    Article  CAS  Google Scholar 

  20. Vogel SS, Chernomordik LV, Zimmerberg J (1992) Calcium-triggered fusion of exocytotic granules requires proteins in only one membrane. J Biol Chem 267:25640–25643

    CAS  Google Scholar 

  21. Churchward MA, Rogasevskaia T, Hofgen J, Bau J, Coorssen JR (2005) Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion. J Cell Sci 118:4833–4848

    Article  CAS  Google Scholar 

  22. Churchward MA, Rogasevskaia T, Brandman DM, Khosravani H, Nava P, Atkinson JK, Coorssen J (2008) Specific lipids supply critical intrinsic negative curvature—an essential component of native Ca2+-triggered membrane fusion. Biophys J 94:3976–3986

    Article  CAS  Google Scholar 

  23. Rogasevskaia T, Coorssen JR (2006) Sphingomyelin-enriched microdomains define the efficiency of native Ca(2+)-triggered membrane fusion. J Cell Sci 119:2688–2694

    Article  CAS  Google Scholar 

  24. Efrat A, Chernomordik LV, Kozlov MM (2007) Point-like protrusion as a prestalk intermediate in membrane fusion pathway. Biophys J 92:L61–L63

    Article  CAS  Google Scholar 

  25. Kozlov MM, Markin VS (1983) Possible mechanism of membrane fusion. Biofizika 28:242–247

    CAS  Google Scholar 

  26. Kozlovsky Y, Efrat A, Siegel DP, Kozlov MM (2004) Stalk phase formation: effects of dehydration and saddle splay modulus. Biophys J 87:2508–2521

    Article  CAS  Google Scholar 

  27. Leikin SL, Kozlov MM, Chernomordik LV, Markin VS, Chizmadzhev YA (1987) Membrane fusion: overcoming of the hydration barrier and local restructuring. J Theor Biol 129:411–425

    Article  CAS  Google Scholar 

  28. Markin VS, Kozlov MM, Borovjagin VL (1984) On the theory of membrane fusion. The stalk mechanism. Gen Physiol Biophys 3:361–377

    CAS  Google Scholar 

  29. Siegel DP (1999) The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion. Biophys J 76:291–313

    Article  CAS  Google Scholar 

  30. Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A 94:2339–2344

    Article  CAS  Google Scholar 

  31. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  CAS  Google Scholar 

  32. Sandhoff R, Brugger B, Jeckel D, Lehmann WD, Wieland FT (1999) Determination of cholesterol at the low picomole level by nano-electrospray ionization tandem mass spectrometry. J Lipid Res 40:126–132

    CAS  Google Scholar 

  33. Hibbert JE, Butt RH, Coorssen JR (2006) Actin is not an essential component in the mechanism of calcium-triggered vesicle fusion. Int J Biochem Cell Biol 38:461–471

    Article  CAS  Google Scholar 

  34. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  35. Pettitt TR, Dove SK, Lubben A, Calaminus SD, Wakelam MJ (2006) Analysis of intact phosphoinositides in biological samples. J Lipid Res 47:1588–1596

    Article  CAS  Google Scholar 

  36. Churchward MA, Butt RH, Lang JC, Hsu KK, Coorssen JR (2005) Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis. Proteome Sci 3:5

    Article  CAS  Google Scholar 

  37. Weerheim AM, Kolb AM, Sturk A, Nieuwland R (2002) Phospholipid composition of cell-derived microparticles determined by one-dimensional high-performance thin-layer chromatography. Anal Biochem 302:191–198

    Article  CAS  Google Scholar 

  38. Long GL, Winefordner JD (1983) Limit of detection. Anal Chem 55:A712–&

    Article  Google Scholar 

  39. Spillman T, Cotton DB, Lynn SC Jr, Bretaudiere JP (1983) Influence of phospholipid saturation on classical thin-layer chromatographic detection methods and its effect on amniotic fluid lecithin/sphingomyelin ratio determinations. Clin Chem 29:250–255

    CAS  Google Scholar 

  40. Rodríguez-Bernaldo De Quirós A, López-Hernández J, Simal-Lozano J (2001) Determination of carotenoids and liposoluble vitamins in sea urchin (Paracentrotus lividus) by high performance liquid chromatography. European Food Research and Technology 212:687–690

    Article  Google Scholar 

  41. Brugger B, Sandhoff R, Wegehingel S, Gorgas K, Malsam J, Helms JB, Lehmann WD, Nickel W, Wieland FT (2000) Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles. J Cell Biol 151:507–518

    Article  CAS  Google Scholar 

  42. Coorssen JR, Blank PS, Albertorio F, Bezrukov L, Kolosova I, Backlund PS Jr, Zimmerberg J (2002) Quantitative femto-to attomole immunodetection of regulated secretory vesicle proteins critical to exocytosis. Anal Biochem 307:54–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Paul P.M. Schnetkamp and Haider F. Altimimi for assistance with spectrofluorometry and Andrew Tang and Lauren Harris for helpful discussions. JRC acknowledges support from NSERC, CIHR, and AHFMR. MAC and DMB acknowledge support from NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens R. Coorssen.

Additional information

Matthew A. Churchward and David M. Brandman contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Churchward, M.A., Brandman, D.M., Rogasevskaia, T. et al. Copper (II) sulfate charring for high sensitivity on-plate fluorescent detection of lipids and sterols: quantitative analyses of the composition of functional secretory vesicles. J Chem Biol 1, 79–87 (2008). https://doi.org/10.1007/s12154-008-0007-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-008-0007-1

Keywords

Navigation