Skip to main content

Advertisement

Log in

Diagnostic value of quantitative assessment of cardiac 18F-fluoro-2-deoxyglucose uptake in suspected cardiac sarcoidosis

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

The identification of cardiac sarcoidosis is challenging as there is no gold standard consensually admitted for its diagnosis. The aim of this study was to evaluate the diagnostic value of the assessment of cardiac dynamic 18F-fluoro-2-deoxyglucose positron emission tomography (18F-FDG PET/CT) and net influx constant (Ki) in patients suspected of cardiac sarcoidosis.

Methods

Data obtained from 30 biopsy-proven sarcoidosis patients suspected of cardiac sarcoidosis who underwent a 50-min list-mode cardiac dynamic 18F-FDG PET/CT after a 24 h high-fat and low-carbohydrate diet were analyzed. A normalized coefficient of variation of quantitative glucose influx constant, calculated as the ratio: standard deviation of the segmental Ki (min−1)/global Ki (min−1) was determined using a validated software (Carimas® 2.4, Turku PET Centre). Cardiac sarcoidosis was diagnosed according to the Japanese Ministry of Health and Welfare criteria. Receiving operating curve analysis was performed to determine sensitivity and specificity of cardiac dynamic 18F-FDG PET/CT analysis to diagnose cardiac sarcoidosis.

Results

Six out of 30 patients (20%) were diagnosed as having cardiac sarcoidosis. Myocardial glucose metabolism was significantly heterogeneous in patients with cardiac sarcoidosis who showed significantly higher normalized coefficient of variation values compared to patients without cardiac sarcoidosis (0.513 ± 0.175 vs. 0.205 ± 0.081; p = 0.0007). Using ROC curve analysis, we found a cut-off value of 0.38 for the diagnosis of cardiac sarcoidosis with a sensitivity of 100% and a specificity of 91%.

Conclusions

Our results suggest that quantitative analysis of cardiac dynamic 18F-FDG PET/CT could be a useful tool for the diagnosis of cardiac sarcoidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

CRP:

C-reactive protein

CS:

Cardiac sarcoidosis

CT:

Computed tomography

FFA:

Free fatty acids

18F-FDG:

8F-fluoro-2-deoxyglucose

18F-FDG PET/CT:

Cardiac dynamic 18F-fluoro-2-deoxyglucose positron emission tomography

FWHM:

Full width at half maximum

HFLC:

High-fat and low-carbohydrate

Ki:

Net influx constant

MPI:

Myocardial perfusion imaging

NCOV:

Normalized coefficient of variation

PET:

Positron emission tomography

ROC:

Receiving operating curve

ROI:

Region of interest

SUV:

Standard uptake value

References

  1. Valeyre D, Prasse A, Nunes H, Uzunhan Y, Brillet P-Y. Müller-Quernheim J Sarcoidosis Lancet. 2014;383:1155–67.

    PubMed  Google Scholar 

  2. Sekiguchi M, Yazaki Y, Isobe M, Hiroe M. Cardiac sarcoidosis: diagnostic, prognostic, and therapeutic considerations. Cardiovasc Drugs Ther Spons Int Soc Cardiovasc Pharmacother. 1996;10:495–510.

    Article  CAS  Google Scholar 

  3. Silverman KJ, Hutchins GM, Bulkley BH. Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation. 1978;58:1204–11.

    Article  PubMed  CAS  Google Scholar 

  4. Hamzeh NY, Wamboldt FS, Weinberger HD. Management of cardiac sarcoidosis in the United States: a Delphi study. Chest. 2012;141:154 – 62.

    Article  PubMed  CAS  Google Scholar 

  5. Diagnostic standard and guidelines for sarcoidosis. Jpn J Sarcoidosis Granulomatous Disord. 2007;27:89–102.

    Google Scholar 

  6. Soejima K, Yada H. The work-up and management of patients with apparent or subclinical cardiac sarcoidosis: with emphasis on the associated heart rhythm abnormalities. J Cardiovasc Electrophysiol. 2009;20:578 – 83.

    Article  PubMed  Google Scholar 

  7. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11:1305–23.

    Article  PubMed  Google Scholar 

  8. Brudin LH, Valind SO, Rhodes CG, Pantin CF, Sweatman M, Jones T, et al. Fluorine-18 deoxyglucose uptake in sarcoidosis measured with positron emission tomography. Eur J Nucl Med. 1994;21:297–305.

    Article  PubMed  CAS  Google Scholar 

  9. Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol. 2008;190:151–6.

    Article  Google Scholar 

  10. Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol. 2009;16:801 – 10.

    Article  PubMed  Google Scholar 

  11. Tahara N, Tahara A, Nitta Y, Kodama N, Mizoguchi M, Kaida H, et al. Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis. JACC Cardiovasc Imaging. 2010;3:1219–28.

    Article  PubMed  Google Scholar 

  12. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.

    Article  PubMed  CAS  Google Scholar 

  13. Fahy GJ, Marwick T, McCreery CJ, Quigley PJ, Maurer BJ. Doppler echocardiographic detection of left ventricular diastolic dysfunction in patients with pulmonary sarcoidosis. Chest. 1996;109:62–6.

    Article  PubMed  CAS  Google Scholar 

  14. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539–542.

  15. Sobic-Saranovic D, Artiko V, Obradovic V. FDG PET imaging in sarcoidosis. Semin Nucl Med. 2013;43:404 – 11.

    Article  PubMed  Google Scholar 

  16. Ishimaru S, Tsujino I, Takei T, Tsukamoto E, Sakaue S, Kamigaki M, et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J. 2005;26:1538–43.

    Article  PubMed  Google Scholar 

  17. Smedema J-P, Snoep G, van Kroonenburgh MPG, van Geuns R-J, Dassen WRM, Gorgels APM, et al. Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol. 2005;45:1683–90.

    Article  PubMed  Google Scholar 

  18. Soussan M, Brillet P-Y, Nunes H, Pop G, Ouvrier M-J, Naggara N, et al. Clinical value of a high-fat and low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. J Nucl Cardiol. 2013;20:120–7.

    Article  PubMed  Google Scholar 

  19. Ohira H, Tsujino I, Ishimaru S, Oyama N, Takei T, Tsukamoto E, et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging. 2008;35:933 – 41.

    Article  PubMed  Google Scholar 

  20. Okumura W, Iwasaki T, Toyama T, Iso T, Arai M, Oriuchi N, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med. 2004;45:1989–98.

    PubMed  Google Scholar 

  21. Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wisenberg G, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53:241–8.

    Article  PubMed  CAS  Google Scholar 

  22. Yamagishi H, Shirai N, Takagi M, Yoshiyama M, Akioka K, Takeuchi K, et al. Identification of cardiac sarcoidosis with (13)N-NH(3)/(18)F-FDG PET. J Nucl Med. 2003;44:1030–6.

    PubMed  Google Scholar 

  23. Freedman NMT, Sundaram SK, Kurdziel K, Carrasquillo JA, Whatley M, Carson JM, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Eur J Nucl Med Mol Imaging. 2003;30:46–53.

    Article  PubMed  Google Scholar 

  24. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med. 1994;35:1308–12.

    PubMed  CAS  Google Scholar 

  25. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-d-glucose: variations with body weight and a method for correction. Radiology. 1993;189:847–50.

  26. Bengel FM, Higuchi T, Javadi MS, Lautamäki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54:1–15.

    Article  PubMed  Google Scholar 

  27. Patel MR, Cawley PJ, Heitner JF, Klem I, Parker MA, Jaroudi WA, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation. 2009;120:1969–77.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Banba K, Kusano KF, Nakamura K, Morita H, Ogawa A, Ohtsuka F, et al. Relationship between arrhythmogenesis and disease activity in cardiac sarcoidosis. Heart Rhythm. 2007;4:1292–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Manrique.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebasnier, A., Legallois, D., Bienvenu, B. et al. Diagnostic value of quantitative assessment of cardiac 18F-fluoro-2-deoxyglucose uptake in suspected cardiac sarcoidosis. Ann Nucl Med 32, 319–327 (2018). https://doi.org/10.1007/s12149-018-1250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-018-1250-3

Keywords

Navigation