Skip to main content
Log in

Clinical value of a high-fat and low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

We hypothesized that a high-fat and low-carbohydrate (HFLC) diet before FDG-PET/CT could identify patients with active cardiac sarcoidosis (CS).

Methods

Fifty-eight sarcoidosis patients with a suspicion of CS consumed a HFLC diet before FDG-PET/CT. Clinical, electrical, and other imaging investigations were compared to PET results.

Results

Using Japanese Ministry of Health and Welfare (JMHW) criteria as a gold standard, 21% (12/58) of patients had a CS. Sensitivity and specificity of PET (visual analysis) were 83% (10/12) and 78% (36/46), respectively, with a very good interobserver agreement (k = 0.86). 70% (7/10) of the patients with a positive PET and negative JMHW criteria exhibited abnormalities suggestive of CS either on MR (n = 3) or SPECT (n = 4). Comparison with the presence of delayed enhancement on magnetic resonance imaging helped to classify patients with active (PET positive) or non-active CS (PET negative). In addition, when MR and PET were both negative, none of the patients met the JMHW criteria. PET response under treatment was concordant with clinical evolution in 11/13 patients.

Conclusions

FDG-PET/CT after HFLC diet is a sensitive tool for the diagnosis of active CS. Combined use of PET and MR is promising for the detection and characterization of CS lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Aubart F, Diebold B, Dhote R, Weinmann P, Valeyre D. Cardiac sarcoidosis. Rev Mal Respir 2003;20:S45-9.

    PubMed  CAS  Google Scholar 

  2. Kim JS, Judson MA, Donnino R, Gold M, Cooper LT Jr, Prystowsky EN, et al. Cardiac sarcoidosis. Am Heart J 2009;157:9-21.

    Article  PubMed  CAS  Google Scholar 

  3. Diagnostic standard and guidelines for sarcoidosis. Jpn J Sarcoidosis Granulomatous Disord 2007;27:89-102 (in Japanese).

    Google Scholar 

  4. Ohira H, Tsujino I, Yoshinaga K. (18)F-Fluoro-2-deoxyglucose positron emission tomography in cardiac sarcoidosis. Eur J Nucl Med Mol Imaging 2011;38:1773-83.

    Article  PubMed  CAS  Google Scholar 

  5. Pandya C, Brunken RC, Tchou P, Schoenhagen P, Culver DA. Detecting cardiac involvement in sarcoidosis: A call for prospective studies of newer imaging techniques. Eur Respir J 2007;29:418-22.

    Article  PubMed  CAS  Google Scholar 

  6. Kaneta T, Hakamatsuka T, Takanami K, Yamada T, Takase K, Sato A, et al. Evaluation of the relationship between physiological FDG uptake in the heart and age, blood glucose level, fasting period, and hospitalization. Ann Nucl Med 2006;20:203-8.

    Article  PubMed  Google Scholar 

  7. Ishimaru S, Tsujino I, Takei T, Tsukamoto E, Sakaue S, Kamigaki M, et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J 2005;26:1538-43.

    Article  PubMed  Google Scholar 

  8. Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18F-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol 2009;16:801-10.

    Article  PubMed  Google Scholar 

  9. Ohira H, Tsujino I, Ishimaru S, Oyama N, Takei T, Tsukamoto E, et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging 2008;35:933-41.

    Article  PubMed  Google Scholar 

  10. Okumura W, Iwasaki T, Toyama T, Iso T, Arai M, Oriuchi N, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med 2004;45:1989-98.

    PubMed  Google Scholar 

  11. Yamagishi H, Shirai N, Takagi M, Yoshiyama M, Akioka K, Takeuchi K, et al. Identification of cardiac sarcoidosis with (13)N-NH(3)/(18)F-FDG PET. J Nucl Med 2003;44:1030-6.

    PubMed  Google Scholar 

  12. Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. AJR Am J Roentgenol 2008;190:W151-6.

    Article  PubMed  Google Scholar 

  13. Harisankar CN, Mittal BR, Agrawal KL, Abrar ML, Bhattacharya A. Utility of high fat and low carbohydrate diet in suppressing myocardial FDG uptake. J Nucl Cardiol 2011;18:926-36.

    Article  PubMed  Google Scholar 

  14. Frayn KN. The glucose-fatty acid cycle: A physiological perspective. Biochem Soc Trans 2003;31:1115-9.

    Article  PubMed  CAS  Google Scholar 

  15. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963;1:785-9.

    Article  PubMed  CAS  Google Scholar 

  16. Buckley O, Doyle L, Padera R, Lakdawala N, Dorbala S, Di Carli M, et al. Cardiomyopathy of uncertain etiology: Complementary role of multimodality imaging with cardiac MRI and 18FDG PET. J Nucl Cardiol 2010;17:328-32.

    Article  PubMed  Google Scholar 

  17. Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med 2007;357:2153-65.

    Article  PubMed  CAS  Google Scholar 

  18. Cummings KW, Bhalla S, Javidan-Nejad C, Bierhals AJ, Gutierrez FR, Woodard PK. A pattern-based approach to assessment of delayed enhancement in nonischemic cardiomyopathy at MR imaging. Radiographics 2009;29:89-103.

    Article  PubMed  Google Scholar 

  19. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.

    Article  PubMed  Google Scholar 

  20. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10.

    Article  PubMed  CAS  Google Scholar 

  21. Altman DG. Practical statistics for medical research. London: Chapman and Hall; 1991.

    Google Scholar 

  22. Tahara N, Tahara A, Nitta Y, Kodama N, Mizoguchi M, Kaida H, et al. Heterogeneous myocardial FDG uptake and the disease activity in cardiac sarcoidosis. JACC Cardiovasc Imaging 2010;3:1219-28.

    Article  PubMed  Google Scholar 

  23. Patel MR, Cawley PJ, Heitner JF, Klem I, Parker MA, Jaroudi WA, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation 2009;120:1969-77.

    Article  PubMed  Google Scholar 

  24. Silverman KJ, Hutchins GM, Bulkley BH. Cardiac sarcoid: A clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation 1978;58:1204-11.

    Article  PubMed  CAS  Google Scholar 

  25. Smedema JP, Snoep G, van Kroonenburgh MP, van Geuns RJ, Dassen WR, Gorgels AP, et al. Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol 2005;45:1683-90.

    Article  PubMed  Google Scholar 

  26. Vignaux O. Cardiac sarcoidosis: Spectrum of MRI features. AJR Am J Roentgenol 2005;184:249-54.

    Article  PubMed  Google Scholar 

  27. Isiguzo M, Brunken R, Tchou P, Xu M, Culver DA. Metabolism-perfusion imaging to predict disease activity in cardiac sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2011;28:50-5.

    PubMed  CAS  Google Scholar 

  28. Mehta D, Lubitz SA, Frankel Z, Wisnivesky JP, Einstein AJ, Goldman M, et al. Cardiac involvement in patients with sarcoidosis: Diagnostic and prognostic value of outpatient testing. Chest 2008;133:1426-35.

    Article  PubMed  Google Scholar 

  29. Tadamura E, Yamamuro M, Kubo S, Kanao S, Hosokawa R, Kimura T, et al. Images in cardiovascular medicine. Multimodality imaging of cardiac sarcoidosis before and after steroid therapy. Circulation 2006;113:e771-3.

    Article  PubMed  Google Scholar 

  30. Takeda N, Yokoyama I, Hiroi Y, Sakata M, Harada T, Nakamura F, et al. Positron emission tomography predicted recovery of complete A-V nodal dysfunction in a patient with cardiac sarcoidosis. Circulation 2002;105:1144-5.

    Article  PubMed  CAS  Google Scholar 

  31. Berrington de Gonzalez A, Mahesh M, Kim KP, Bhargavan M, Lewis R, Mettler F, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 2009;169:2071-7.

    Article  PubMed  Google Scholar 

  32. Fields CL, Ossorio MA, Roy TM, Denny DM, Varga DW. Thallium-201 scintigraphy in the diagnosis and management of myocardial sarcoidosis. South Med J 1990;83:339-42.

    Article  PubMed  CAS  Google Scholar 

  33. Tellier P, Paycha F, Antony I, Nitenberg A, Valeyre D, Foult JM, et al. Reversibility by dipyridamole of thallium-201 myocardial scan defects in patients with sarcoidosis. Am J Med 1988;85:189-93.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Soussan MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soussan, M., Brillet, PY., Nunes, H. et al. Clinical value of a high-fat and low-carbohydrate diet before FDG-PET/CT for evaluation of patients with suspected cardiac sarcoidosis. J. Nucl. Cardiol. 20, 120–127 (2013). https://doi.org/10.1007/s12350-012-9653-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-012-9653-3

Keywords

Navigation