Skip to main content
Log in

Feasibility and kinetic characteristics of 68Ga-NOTA-RGD PET for in vivo atherosclerosis imaging

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

In this study, the feasibility and kinetic characteristics of the 68Ga-NOTA-RGD, a recently developed RGD peptide agent, were investigated for atherosclerosis imaging in comparison with 18FDG.

Methods

ApoE−/− mice were fed a high-fat diet for more than 20 weeks. To evaluate the feasibility, tissue uptakes of 68Ga-NOTA-RGD and 18FDG in the major organs were measured and compared between ApoE−/− and control mice. Animal PET imaging was also performed and relative uptake values in the thoracic aorta were compared between ApoE−/− and control mice. In humans, the kinetic characteristics and feasibility of 68Ga-NOTA-RGD PET were assessed in 4 patients with known coronary artery disease.

Results

In the tissue uptake study, the thoracic aorta showed higher uptake in ApoE−/− than in control mice with both 68Ga-NOTA-RGD and 18FDG (P < 0.001). On PET scans, the relative uptake values of the thoracic aorta were significantly higher in ApoE−/− with both 68Ga-NOTA-RGD (P = 0.024) and 18FDG (P = 0.038). In human PET, the appropriateness of reversible binding model and Logan plotting was clearly demonstrated. The aorta-to-jugular ratios were measured up to 1.25 and showed a tendency to correlate with the serum high-sensitivity C-reactive protein level (r = 0.899, P = 0.102).

Conclusions

68Ga-NOTA-RGD has potential as an in vivo atherosclerosis imaging agent. However, the lower imaging contrast and sensitivity of 68Ga-NOTA-RGD PET compared with 18FDG PET may be a limitation for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hackett D, Davies G, Maseri A. Pre-existing coronary stenoses in patients with first myocardial infarction are not necessarily severe. Eur Heart J. 1988;9:1317–23.

    Article  CAS  PubMed  Google Scholar 

  2. Murabito JM, Evans JC, Larson MG, Levy D. Prognosis after the onset of coronary heart disease. An investigation of differences in outcome between the sexes according to initial coronary disease presentation. Circulation. 1993;88:2548–55.

    Article  CAS  PubMed  Google Scholar 

  3. Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451:953–7.

    Article  CAS  PubMed  Google Scholar 

  4. Ogawa M, Magata Y, Kato T, Hatano K, Ishino S, Mukai T, et al. Application of 18F-FDG PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. J Nucl Med. 2006;47:1845–50.

    CAS  PubMed  Google Scholar 

  5. Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48:1825–31.

    Article  CAS  PubMed  Google Scholar 

  6. Arauz A, Hoyos L, Zenteno M, Mendoza R, Alexanderson E. Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography. Pilot study. Clin Neurol Neurosurg. 2007;109:409–12.

    Article  PubMed  Google Scholar 

  7. Tahara N, Kai H, Yamagishi S, Mizoguchi M, Nakaura H, Ishibashi M, et al. Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol. 2007;49:1533–9.

    Article  CAS  PubMed  Google Scholar 

  8. Potter K, Lenzo N, Eikelboom JW, Arnolda LF, Beer C, Hankey GJ. Effect of long-term homocysteine reduction with B vitamins on arterial wall inflammation assessed by fluorodeoxyglucose positron emission tomography: a randomised double-blind, placebo-controlled trial. Cerebrovasc Dis. 2009;27:259–65.

    Article  CAS  PubMed  Google Scholar 

  9. Burtea C, Laurent S, Murariu O, Rattat D, Toubeau G, Verbruggen A, et al. Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA. Cardiovasc Res. 2008;78:148–57.

    Article  CAS  PubMed  Google Scholar 

  10. Waldeck J, Hager F, Holtke C, Lanckohr C, von Wallbrunn A, Torsello G, et al. Fluorescence reflectance imaging of macrophage-rich atherosclerotic plaques using an alphavbeta3 integrin-targeted fluorochrome. J Nucl Med. 2008;49:1845–51.

    Article  PubMed  Google Scholar 

  11. Laitinen I, Saraste A, Weidl E, Poethko T, Weber AW, Nekolla SG, et al. Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ Cardiovasc Imaging. 2009;2:331–8.

    Article  PubMed  Google Scholar 

  12. Jeong JM, Hong MK, Chang YS, Lee YS, Kim YJ, Cheon GJ, et al. Preparation of a promising angiogenesis PET imaging agent: 68 Ga-labeled c(RGDyK)-isothiocyanatobenzyl-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med. 2008;49:830–6.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang X, Xiong Z, Wu Y, Cai W, Tseng JR, Gambhir SS, et al. Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med. 2006;47:113–21.

    CAS  PubMed  Google Scholar 

  14. Patsenker E, Popov Y, Stickel F, Schneider V, Ledermann M, Sagesser H, et al. Pharmacological inhibition of integrin alphavbeta3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis. Hepatology. 2009;50:1501–11.

    Article  CAS  PubMed  Google Scholar 

  15. Tahara N, Imaizumi T, Virmani R, Narula J. Clinical feasibility of molecular imaging of plaque inflammation in atherosclerosis. J Nucl Med. 2009;50:331–4.

    Article  CAS  PubMed  Google Scholar 

  16. Aziz K, Berger K, Claycombe K, Huang R, Patel R, Abela GS. Noninvasive detection and localization of vulnerable plaque and arterial thrombosis with computed tomography angiography/positron emission tomography. Circulation. 2008;117:2061–70.

    Article  PubMed  Google Scholar 

  17. Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48:1818–24.

    Article  PubMed  Google Scholar 

  18. Graebe M, Pedersen SF, Borgwardt L, Hojgaard L, Sillesen H, Kjaer A. Molecular pathology in vulnerable carotid plaques: correlation with [18]-fluorodeoxyglucose positron emission tomography (FDG-PET). Eur J Vasc Endovasc Surg. 2009;37:714–21.

    Article  CAS  PubMed  Google Scholar 

  19. Wu YW, Kao HL, Chen MF, Lee BC, Tseng WY, Jeng JS, et al. Characterization of plaques using 18F-FDG PET/CT in patients with carotid atherosclerosis and correlation with matrix metalloproteinase-1. J Nucl Med. 2007;48:227–33.

    CAS  PubMed  Google Scholar 

  20. Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50:1611–20.

    Article  PubMed  Google Scholar 

  21. Jaffer FA, Libby P, Weissleder R. Molecular imaging of cardiovascular disease. Circulation. 2007;116:1052–61.

    Article  PubMed  Google Scholar 

  22. Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA. 2003;100:4736–41.

    Article  CAS  PubMed  Google Scholar 

  23. Higuchi T, Bengel FM, Seidl S, Watzlowik P, Kessler H, Hegenloh R, et al. Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc Res. 2008;78:395–403.

    Article  CAS  PubMed  Google Scholar 

  24. Haukkala J, Laitinen I, Luoto P, Iveson P, Wilson I, Karlsen H, et al. 68Ga-DOTA-RGD peptide: biodistribution and binding into atherosclerotic plaques in mice. Eur J Nucl Med Mol Imaging. 2009;36:2058–67.

    Article  CAS  Google Scholar 

  25. Yang SJ, Kim S, Choi HY, Kim TN, Yoo HJ, Seo JA, et al. High-sensitivity C-reactive protein in the low- and intermediate-Framingham risk score groups: analysis with (18)F-fluorodeoxyglucose positron emission tomography. Int J Cardiol. 2013;163:277–81.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A090633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paeng, J.C., Lee, YS., Lee, J.S. et al. Feasibility and kinetic characteristics of 68Ga-NOTA-RGD PET for in vivo atherosclerosis imaging. Ann Nucl Med 27, 847–854 (2013). https://doi.org/10.1007/s12149-013-0757-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-013-0757-x

Keywords

Navigation