Skip to main content

Advertisement

Log in

Correlation between neuropsychological tests and hypoperfusion in MCI patients: anatomical labeling using xjView and Talairach Daemon Software

  • Original article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Purpose

Statistical analysis of brain perfusion SPECT images has shown mild to severe abnormalities, consistent with cortical dysfunctions in the brain. Recently, functional brain imaging such as fMRI, PET and SPECT is increasingly used for diagnosis of MCI. In this study, we calculate the correlation with perfusion of brain SPECT and neuropsychological test scores of patients by SPM analysis to evaluate the relationship with cerebral hypoperfusion and cognitive dysfunction in MCI patients. Anatomical labeling was performed automatically using the Talairach Daemon (TD) and xjView.

Methods

Ninety-three patients (mean age 67.2 ± 7.42 years; 59 women and 34 men) with MCI were selected and examined by the comprehensive neuropsychological test. Tc-99m-HMPAO brain SPECT images were acquired on the patients using a two-head gamma camera. We analyzed the brain image of MCI patients by SPM8 software, and observed the anatomical correlated region, between the neuropsychological tests and cerebral hypoperfusion. The SPM8 tool provided correlation between neuropsychological score and brain perfusion by simple regression method. The neuropsychological test included attention, language function, visuospatial function, memory, frontal executive function, depression score and general cognitive function.

Results

Percentage of voxels with correlated area to the whole brain was calculated and the values by Rey complex figure test (CFT) copy score, MMSE score, Seoul verbal learning test (SVLT) immediate recall score and Rey CFT delayed recall score were 15.3, 12.33, 10.59 and 8.45 %, respectively. Rey CFT copy score was correlated with perfusion in the left middle temporal gyrus (BA 21), right inferior frontal gyrus (BA 45), right lingual gyrus, left lingual gyrus (BA 18), right postcentral gyrus (BA 40), right cingulate gyrus (BA 31) and left thalamus (pulvinar) with p < 0.01 FDR. The correlation related to MMSE included left parahippocampal gyrus, right fusiform gyrus and right middle frontal gyrus (BA 46). SVLT immediate recall score was correlated with left superior temporal gyrus and Rey CFT delayed recall score was correlated with left inferior frontal gyrus (BA 47), right inferior frontal gyrus, and left lentiform nucleus. Visuospatial and general cognitive dysfunctions in the patients with MCI were most correlated with cerebral hypoperfusion.

Conclusions

Rey CFT copy and MMSE scores were more strongly correlated with blood perfusion of the brain than with other neuropsychological test scores. xjView was a useful tool to find out the anatomical name of the selected voxel or clusters and to display the cluster’s anatomical information and list all cluster information and could be used instead of TD Client.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Janvin CC, Larsen JP, Aarsland D, Hugdahl K. Subtypes of mild cognitive impairment in Parkinson’s disease: progression to dementia. Mov Disord. 2006;21(9):1343–9.

    Article  PubMed  Google Scholar 

  2. Kim JW, Jo HY, Park MJ, Cheon SM. Mild cognitive impairment in Parkinson’s disease. J Mov Disord. 2008;1(1):19–25.

    Google Scholar 

  3. Kim JW, Cheon SM, Park MJ, Kim SY, Jo HY. Cognitive impairment in Parkinson’s disease without dementia: subtypes and influences of age. J Clin Neurol. 2009;133–8.

  4. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58(12):1985–92.

    Article  CAS  PubMed  Google Scholar 

  5. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303–8.

    Article  CAS  PubMed  Google Scholar 

  6. Borroni B, Anchisi D, Paghera B, Vicini B, Kerrouche N, Garibotto V, et al. Combined 99m Tc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD. Neurobiol Aging. 2006;27(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  7. Kang HJ, Kang EJ, Lee JS, Yeo JS, Kim JY, Lee DS, et al. Relationship between brain perfusion SPECT and MMSE Score in dementia of Alzheimer’s type: a statistical parametric mapping analysis. Korean J Nucl Med. 2002;36(2):91–101.

    Google Scholar 

  8. Visser PJ, Kester A, Jolles J, Verhey F. Ten-year risk of dementia in subjects with mild cognitive impairment. Neurology. 2006;67(7):1201–7.

    Article  PubMed  Google Scholar 

  9. Matsuda H. Role of neuroimaging in Alzheimer’s disease, with emphasis on brain perfusion SPECT. J Nucl Med. 2007;48(8):1289–300.

    Article  PubMed  Google Scholar 

  10. Herholz K, Schopphoff H, Schmidt M, Mielke R, Eschner W, Scheidhauer K, et al. Direct comparison of spatially normalized PET and SPECT scans in Alzheimer’s disease. J Nucl Med. 2002;43(1):21–6.

    PubMed  Google Scholar 

  11. Bradley KM. Cerebral perfusion SPET correlated with Braak pathological stage in Alzheimer’s disease. Brain. 2002;125(8):1772–81.

    Article  CAS  PubMed  Google Scholar 

  12. Habert MO. Brain perfusion SPECT correlates with CSF biomarkers in Alzheimer’s disease. Eur J Nucl Med. 2010;37(3):589–93.

    Article  Google Scholar 

  13. Petersen R. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94.

    Article  CAS  PubMed  Google Scholar 

  14. Nobili F, Abbruzzese G, Morbelli S, Marchese R, Girtler N, Dessi B, et al. Amnestic mild cognitive impairment in Parkinson’s disease: a brain perfusion SPECT study. Mov Disord. 2009;24(3):414–21.

    Article  PubMed  Google Scholar 

  15. Kang YW, Na DL, Hahn SH. A validity study on the Korean Mini-Mental State Examination (MMSE) in dementia patients. J Korean Neurol Assoc. 1997;15:300–7.

    Google Scholar 

  16. Kang Y, Na D. Seoul neuropsychological screening battery. Incheon: Human Brain Research & Consulting Co; 2003.

    Google Scholar 

  17. Chang L. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci. 1978;25(1):638–43.

    Article  Google Scholar 

  18. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp. 1994;2(4):189–210.

    Article  Google Scholar 

  19. Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ. Spatial registration and normalization of images. Hum Brain Mapp. 1995;3(3):165–89.

    Article  Google Scholar 

  20. Friston K, Holmes A, Poline J, Price C, Frith C. Detecting activations in PET and fMRI: levels of inference and power. Neuroimage. 1996;4(3):223–35.

    Article  CAS  PubMed  Google Scholar 

  21. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. New York: Thieme; 1988.

    Google Scholar 

  22. SPM8. http://www.fil.ion.ucl.ac.uk/spm/software/spm8. Accessed 1 July 2010.

  23. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp. 2000;10(3):120–31.

    Article  CAS  PubMed  Google Scholar 

  24. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage. 2005;25(4):1325–35.

    Article  PubMed  Google Scholar 

  25. Morbelli S, Rodriguez G, Mignone A, Altrinetti V, Brugnolo A, Piccardo A, et al. The need of appropriate brain SPECT templates for SPM comparisons. Q J Nucl Med Mol Imaging. 2008;52(1):89–98.

    CAS  PubMed  Google Scholar 

  26. xjView. http://www.alivelearn.net/xjview8/ Accessed 8 May 2010.

  27. Talairach Daemon 2.4.2. http://www.talairach.org/ Accessed 8 May 2010.

  28. Lee JS, Lee DS, Oh SH, Kim CS, Kim JW, Hwang CH, et al. PET evidence of neuroplasticity in adult auditory cortex of postlingual deafness. J Nucl Med. 2003;44(9):1435–9.

    PubMed  Google Scholar 

  29. Benoit M, Clairet S, Koulibaly P, Darcourt J, Robert P. Brain perfusion correlates of the apathy inventory dimensions of Alzheimer’s disease. Int J Geriatr Psychiatry. 2004;19(9):864–9.

    Article  CAS  PubMed  Google Scholar 

  30. Benoit M, Dygai I, Migneco O, Robert P, Bertogliati C, Darcourt J, et al. Behavioral and psychological symptoms in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2000;10(6):511–7.

    Article  Google Scholar 

  31. Migneco O, Benoit M, Koulibaly PM, Dygai I, Bertogliati C, Desvignes P, et al. Perfusion brain SPECT and statistical parametric mapping analysis indicate that apathy is a cingulate syndrome: a study in Alzheimer’s disease and nondemented patients. Neuroimage. 2001;13(5):896–902.

    Article  CAS  PubMed  Google Scholar 

  32. Kang JH, Cheon SM, Park JW, Cha JK, Kim SH, Kang DY, et al. Analysis of regional cerebral blood flow using brain SPECT in the patients with mild cognitive impairment according to subtypes. Dement Neurocognitive Disord. 2009;8:21–7.

    Google Scholar 

  33. MNI Space Utility. http://www.ihb.spb.ru/~pet_lab/MSU/MSUMain.html Accessed 1 July 2010.

  34. WFU PickAtlas. http://www.fmri.wfubmc.edu/cms/software Accessed 1 July 2010.

  35. CBU Imaging. http://imaging.mrc-cbu.cam.ac.uk/imaging/CbuImaging Accessed 1 July 2010.

  36. Lancaster J, Summerlin J, Rainey L, Freitas C, Fox P. The Talairach daemon, a database server for Talairach atlas labels. Neuroimage. 1997;5(4):238–42.

    CAS  Google Scholar 

  37. Maldjian J, Laurienti P, Kraft R, Burdette J. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19(3):1233–9.

    Article  PubMed  Google Scholar 

  38. Caroli A, Testa C, Geroldi C, Nobili F, Barnden LR, Guerra UP, et al. Cerebral perfusion correlates of conversion to Alzheimer’s disease in amnestic mild cognitive impairment. J Neurol. 2007;254(12):1698–707.

    Article  CAS  PubMed  Google Scholar 

  39. Chételat G, Desgranges B, de la Sayette V, Viader F, Eustache F, Baron JC. Mapping gray matter loss with voxel-based morphometry in mild cognitive impairment. NeuroReport. 2002;13(15):1939–43.

    Article  PubMed  Google Scholar 

  40. Encinas M, Juan R, Marcos A, Gil P, Barabash A, Fernandez C, et al. Regional cerebral blood flow assessed with 99m Tc-ECD SPET as a marker of progression of mild cognitive impairment to Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2003;30(11):1473–80.

    Article  PubMed  Google Scholar 

  41. Chételat G, Eustache F, Viader F, De La Sayette V, Pélerin A, Mézenge F, et al. FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase. 2005;11(1):14–25.

    Article  PubMed  Google Scholar 

  42. Ishiwata A, Sakayori O, Minoshima S, Mizumura S, Kitamura S, Katayama Y. Preclinical evidence of Alzheimer changes in progressive mild cognitive impairment: a qualitative and quantitative SPECT study. Acta Neurol Scand. 2006;114(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  43. Drzezga A, Grimmer T, Riemenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and 18F-FDG PET. J Nucl Med. 2005;46(10):1625–32.

    CAS  PubMed  Google Scholar 

  44. Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology. 2005;64(11):1860–7.

    Article  CAS  PubMed  Google Scholar 

  45. Johnson K, Moran E, Becker J, Blacker D, Fischman A, Albert M. Single photon emission computed tomography perfusion differences in mild cognitive impairment. J Neurol Neurosurg Psychiatry. 2007;78(3):240–7.

    Article  CAS  PubMed  Google Scholar 

  46. Caffarra P, Ghetti C, Concari L, Venneri A. Differential patterns of hypoperfusion in subtypes of mild cognitive impairment. Open Neuroimaging J. 2008;2:20–8.

    Article  Google Scholar 

  47. Nobili F, Frisoni GB, Portet F, Verhey F, Rodriguez G, Caroli A, et al. Brain SPECT in subtypes of mild cognitive impairment. J Neurol. 2008;255(9):1344–53.

    Article  PubMed  Google Scholar 

  48. Busse A, Hensel A, Guhne U, Angermeyer M, Riedel-Heller S. Mild cognitive impairment: long-term course of four clinical subtypes. Neurology. 2006;67(12):2176–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Dong-A University research fund. The authors would like to thank Dr. Adrian Ankiewicz from ANU (Australia) and Dr. Guillaume Flandin in University College London (UK) for helpful comments on the manuscript. Also, the authors thank Dr. Xu Cui in Stanford University (US) for their skilled technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Young Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, H.J., Park, K.W., Jeong, Y.J. et al. Correlation between neuropsychological tests and hypoperfusion in MCI patients: anatomical labeling using xjView and Talairach Daemon Software. Ann Nucl Med 26, 656–664 (2012). https://doi.org/10.1007/s12149-012-0625-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-012-0625-0

Keywords

Navigation