Skip to main content

Advertisement

Log in

Brain SPECT in subtypes of mild cognitive impairment

Findings from the DESCRIPA multicenter study

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The Development of Screening Guidelines and Clinical Criteria of Predementia Alzheimer’s Disease (DESCRIPA) multicenter study enrolled patients with MCI or subjective cognitive complaints (SUBJ), a part of whom underwent optional brain perfusion SPECT. These patients were classified as SUBJ (n = 23), nonamnestic MCI (naMCI; n = 17) and amnestic MCI (aMCI; n = 40) based on neuropsychology. Twenty healthy subjects formed the control (CTR) group. Volumetric regions of interest (VROI) analysis was performed in six associative cortical areas in each hemisphere. ANOVA for repeated measures, corrected for age and center, showed significant differences between groups (p = 0.01) and VROI (p < 0.0001) with a significant group-region interaction (p = 0.029). In the post hoc comparison, SUBJ did not differ from CTR. aMCI disclosed reduced uptake in the left hippocampus and bilateral temporal cortex (compared with CTR) or in the left hippocampus and bilateral parietal cortex (compared with SUBJ). In the naMCI group, reduced VROI values were found in the bilateral temporal cortex and right frontal cortex. In the comparison between aMCI and naMCI, the former had lower values in the left parietal cortex and precuneus. Discriminant analysis between SUBJ/CTR versus all MCI patients allowed correct allocations in 73 % of cases. Mean VROI values were highly correlated (p < 0.0001) with the learning measure of a verbal memory test, especially in the bilateral precunei and parietal cortex and in the left hippocampus. In a subset of 70 patients, mean VROI values showed a significant correlation (p < 0.05) with the white matter hyperintensities score on MRI. In conclusion, MCI subtypes have different perfusion patterns. The aMCI group exhibited a pattern that is typical of early Alzheimer’s disease, while the naMCI group showed a more anterior pattern of hypoperfusion. Instead, a homogeneous group effect was lacking in SUBJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anchisi D, Borroni B, Franceschi M, Kerrouche N, Kalbe E, Beuthien- Beumann B, Cappa S, Lenz O, Ludecke S, Marcone A, Mielke R, Ortelli P, Padovani A, Pelati O, Pupi A, Scarpini E, Weisenbach S, Herholz K, Salmon E, Holthoff V, Sorbi S, Fazio F, Perani D (2005) Heterogeneity of Brain Glucose Metabolism in Mild Cognitive Impairment and Clinical Progression to Alzheimer Disease. Arch Neurol 62:1728–1733

    Article  PubMed  Google Scholar 

  2. Bennett DA, Wilson RS, Schneider JA, Evans DA, Beckett LA, Aggarwal NT, Barnes LL, Fox JH, Bach J (2002) Natural history of mild cognitive impairment in older persons. Neurology 59:198–205

    PubMed  CAS  Google Scholar 

  3. Borroni B, Anchisi D, Paghera B, Vicini B, Kerrouche N, Garibotto V, Terzi A, Vignolo LA, Di Luca M, Giubbini R, Padovani A, Perani D (2006) Combined 99mTc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD. Neurobiol Aging 27:24–31

    Article  PubMed  CAS  Google Scholar 

  4. Carlesimo GA, Caltagirone C, Gainotti G (1996) The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analysis of cognitive impairment. The group for the standardization of the Mental Deterioration Battery. Eur Neurol 36:378–384

    Article  PubMed  CAS  Google Scholar 

  5. Caroli A, Testa C, Geroldi C, Nobili F, Guerra UP, Bonetti M, Frisoni GB (2007) Brain perfusion correlates of medial temporal lobe atrophy and white matter hyperintensities in mild cognitive impairment. J Neurol 254:1000–1008

    Article  PubMed  Google Scholar 

  6. Chetelat G, Eustache F, Viader F, De La Sayette V, Pelerin A, Mezenge F, Hannequin D, Dupuy B, Baron JC, Desgranges B (2005) FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 11:14–25

    Article  PubMed  Google Scholar 

  7. Dierckx E, Engelborghs S, De Raedt R, De Deyn PP, Ponjaert-Kristoffersen I (2007) Mild Cognitive Impairment: What’s in a Name? Gerontology 53:28–35

    Article  PubMed  CAS  Google Scholar 

  8. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, Schwaiger M, Kurz A (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30:1104–1113

    Article  PubMed  Google Scholar 

  9. Drzezga A, Grimmer T, Riemenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, Minoshima S, Schwaiger M, Kurz A (2005) Prediction of individual clinical outcome in MCI by means of genetic assessment and 18F-FDG PET. J Nucl Med 46:1625–1632

    PubMed  CAS  Google Scholar 

  10. Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746

    Article  PubMed  Google Scholar 

  11. Elgh E, Sundström T, Näsman B, Ahlström R, Nyberg L (2002) Memory functions and rCBF 99mTc-HMPAO SPET: developing diagnostics in Alzheimer’s disease. Eur J Nucl Med 29:1140–1148

    Article  CAS  Google Scholar 

  12. Encinas M, De Juan R, Marcos A, Gil P, Barabash A, Fernandez C, De Ugarte C, Cabranes JA (2003) Regional cerebral blood flow assessed with 99mTc-ECD SPET as a marker of progression of mild cognitive impairment to Alzheimer’s disease. Eur J Nucl Med Mol Imaging 30:1473–1480

    Article  PubMed  Google Scholar 

  13. Grober E, Buschke H, Crystal H, Bang S, Dresner R (1988) Screening for dementia by memory testing. Neurology 38:900–903

    PubMed  CAS  Google Scholar 

  14. Guedj E, Barbeau EJ, Didic M, Felician O, de Laforte C, Ceccaldi M, Mundler O, Poncet M (2006) Identification of subgroups in amnestic mild cognitive impairment. Neurology 67:356–358

    Article  PubMed  CAS  Google Scholar 

  15. Herholz K, Perani D, Salmon E, Franck G, Fazio F, Heiss WD, Comar D (1993) Comparability of FDG PET studies in probable Alzheimer’s disease. J Nucl Med 34:1460–1466

    PubMed  CAS  Google Scholar 

  16. Hirao K, Ohnishi T, Hirata Y, Yamashita F, Mori T, Moriguchi Y, Matsuda H, Nemoto K, Imabayashi E, Yamada M, Iwamoto T, Arima K, Asada T (2005) The prediction of rapid conversion to Alzheimer’s disease in mild cognitive impairment using regional cerebral blood flow SPECT. NeuroImage 28:1014–1021

    Article  PubMed  Google Scholar 

  17. Høgh P, Madsen Sjö N, Gade A, Waldemar G (2004) Temporal Lobe Hypoperfusion in Isolated Amnesia with Slow Onset: A Single Photon Emission Computer Tomography Study. Dement Geriatr Cogn Disord 18:15–23

    Article  PubMed  Google Scholar 

  18. Huang C, Wahlund LO, Almkvist O, Elehu D, Svensson L, Jonsson T, Winblad B, Julin P (2003) Voxel- and VOI-based analysis of SPECT CBF in relation to clinical and psychological heterogeneity of mild cognitive impairment. NeuroImage 19:1137–1144

    Article  PubMed  CAS  Google Scholar 

  19. Huang C, Eidelberg D, Habeck C, Moeller J, Svensson L, Tarabula T, Julin P (2007) Imaging markers of mild cognitive impairment: multivariate analysis of CBF SPECT. Neurobiol Aging 28:1062–1069

    Article  PubMed  CAS  Google Scholar 

  20. Ishiwata A, Sakayori O, Minoshima S, Mizumura S, Kitamura S, Katayama Y (2006) Preclinical evidence of Alzheimer changes in progressive mild cognitive impairment: a qualitative and quantitative SPECT study. Acta Neurol Scand 114:91–96

    Article  PubMed  CAS  Google Scholar 

  21. Johnson KA, Moran EK, Becker JA, Blacker D, Fischman AJ, Albert MS (2007) SPECT perfusion differences in mild cognitive impairment. J Neurol Neurosurg Psychiatry 78:240–247

    Article  PubMed  CAS  Google Scholar 

  22. Koulibaly PM, Glabus MF, Eschner W (2003) Combining images from different clinical settings: technical issues. In: Ebert D, Ebmeier KP, Kaschka WP, Rechlin T (eds) SPECT in dementia. Advances in Biological Psychiatry, Karger, Bazel (Switzerland), Vol. 22, pp 62–71

  23. Koulibaly PM, Nobili F, Migneco O, Vitali P, Robert PH, Girtler N, Darcourt J, Rodriguez G (2003) 99mTc-HMPAO and 99mTc-ECD perform differently in typically hypoperfused areas in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 30:1009–1013

    Article  PubMed  CAS  Google Scholar 

  24. Kurz A, Riemenschneider M, Wallin A (2003) Potential biological markers for cerebrovascular disease. Int Psychogeriatr 15(Suppl 1):89–97

    Article  PubMed  Google Scholar 

  25. Loewenstein DA, Acevedo A, Agron J, Duara R (2007) Stability of Neurocognitive Impairment in Different Subtypes of Mild Cognitive Impairment. Dement Geriatr Cogn Disord 23:82–86

    Article  PubMed  Google Scholar 

  26. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An Automated Method for Neuroanatomic and Cytoarchitectonic Atlas-based Interrogation of fMRI Data Sets. NeuroImage 19:1233–1239

    Article  PubMed  Google Scholar 

  27. Masur DM, Fuld PA, Blau AD, Thal LJ, Levin HS, Aronson MK (1989) Distinguishing normal and demented elderly with the selective reminding test. J Clin Exp Neuropsychol 11:615–630

    Article  PubMed  CAS  Google Scholar 

  28. Minett TS, Dean JL, Firbank M, English P, O’Brien JT (2005) Subjective memory complaints, white-matter lesions, depressive symptoms, and cognition in elderly patients. Am J Geriatr Psychiatry 13:665–671

    Article  PubMed  Google Scholar 

  29. Mol ME, van Boxtel MP, Willems D, Jolles J (2006) Do subjective memory complaints predict cognitive dysfunction over time? A six-year follow-up of the Maastricht Aging Study. Int J Geriatr Psychiatry 21:432–441

    Article  PubMed  Google Scholar 

  30. Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, Li Y, Boppana M, de Leon MJ (2005) Reduced hippocampal metabolism in MCI and AD: Automated FDG-PET image analysis. Neurology 64:1860–1867

    Article  PubMed  CAS  Google Scholar 

  31. Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDGPET studies in MCI and AD. Eur J Nucl Med Mol Imaging 32:486–510

    Article  PubMed  CAS  Google Scholar 

  32. Nobili F, Brugnolo A, Calvini P, Copello F, De Leo C, Girtler N, Morbelli S, Piccardo A, Vitali P, Rodriguez G (2005) Resting SPECT-neuropsychology correlation in very mild Alzheimer’s disease. Clin Neurophysiol 116:364–375

    Article  PubMed  CAS  Google Scholar 

  33. Oda K, Okubo Y, Ishida R, Murata Y, Ohta K, Matsuda T, Matsushima E, Ichimiya T, Suhara T, Shibuya H, Nishikawa T (2003) Regional cerebral blood flow in depressed patients with white matter magnetic resonance hyperintensity. Biol Psychiatry 53:150–156

    Article  PubMed  Google Scholar 

  34. Patterson JC, Early TS, Martin A, Walker MZ, Russell JM, Villanueva-Meyer H (1997) SPECT image analysis using statistical parametric mapping: comparison of technetium-99m-HMPAO and technetium-99m-ECD. J Nucl Med 38:1721–1725

    PubMed  CAS  Google Scholar 

  35. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, Ritchie K, Rossor M, Thal L, Winblad B (2001) Current concepts in mild cognitive impairment. Arch Neurol 58:1985–1992

    Article  PubMed  CAS  Google Scholar 

  36. Radloff LS (1977) The CES-D scale: A self-report depression scale for research in the general population. Appl Psychol Measurem 1:385–401

    Article  Google Scholar 

  37. Reed BR, Eberling JL, Mungas D, Weiner M, Kramer JH, Jagust WJ (2004) Effects of white matter lesions and lacunes on cortical function. Arch Neurol 61:1545–1550

    Article  PubMed  Google Scholar 

  38. Reid LM, Maclullich AM (2006) Subjective memory complaints and cognitive impairment in older people. Dement Geriatr Cogn Disord 22:471–485

    Article  PubMed  Google Scholar 

  39. Rey A (1958) Memorisation d’une serie de 15 mots en 5 repetitions. In: Rey A, ed. L’examen clinique en psychologie. Paris: Presse Universitaire de France

  40. Rieck H, Adelwohrer C, Lungenschmid K, Deisenhammer E. (1998) Discordance of technetium-99m-HMPAO and technetium-99m-ECD in herpes simplex encephalitis. J Nucl Med 39:1508–1510

    PubMed  CAS  Google Scholar 

  41. Rodriguez G, Arvigo F, Marenco S, Nobili F, Romano P, Sandini G, Rosadini G (1987) Regional cerebral blood flow in essential hypertension: data evaluation by a mapping system. Stroke 18:13–20

    PubMed  CAS  Google Scholar 

  42. Sabri O, Ringelstein EB, Hellwig D, Schneider R, Schreckenberger M, Kaiser HJ, Mull M, Buell U (1999) Neuropsychological impairment correlates with hypoperfusion and hypometabolism but not with severity of white matter lesions on MRI in patients with cerebral microangiopathy. Stroke 30:556–566

    PubMed  CAS  Google Scholar 

  43. Tatsch K, Asenbaum S, Bartenstein P, Catafau A, Halldin C, Pilowsky LS, Pupi A; European Association of Nuclear Medicine (2002) European Association of Nuclear Medicine procedure guidelines for brain perfusion SPECT using 99mTc-labelled radiopharmaceuticals. Eur J Nucl Med 29:BP36–BP42

    Article  CAS  Google Scholar 

  44. Tsui BMW, Frey EC, Zhao X, Lalush DS, Johnston RE, McCartney WH (1994) The importance and implementation of accurate 3D compensation methods for quantitative SPECT. Phys Med Biol 39:509–530

    Article  PubMed  CAS  Google Scholar 

  45. Visser PJ, Kester A, Jolles J, Verhey F (2006) Ten-year risk of dementia in subjects with mild cognitive impairment. Neurology 67:1201–1207

    Article  PubMed  Google Scholar 

  46. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, Wallin A, Ader H, Leys D, Pantoni L, Pasquier F, Erkinjuntti T, Scheltens P; European Task Force on Age-Related White Matter Changes (2001) A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 32:1318–1322

    PubMed  CAS  Google Scholar 

  47. Zeng GL, Hsieh Y-L, Gullberg GT (1994) A rotating and warping projector-backprojector pair for fan-beam and cone-beam iterative algorithms. IEEE Trans Nucl Sci 41:2807–2811

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Nobili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nobili, F., Frisoni, G.B., Portet, F. et al. Brain SPECT in subtypes of mild cognitive impairment. J Neurol 255, 1344–1353 (2008). https://doi.org/10.1007/s00415-008-0897-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-008-0897-4

Key words

Navigation