Skip to main content

Advertisement

Log in

Prognostic Impact of Tumor Immune Microenvironment and Its Predictive Role in Salivary Gland Cancer

  • Review
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

Background

Recently, many studies have investigated the role of tumor immune microenvironment (TIME) in carcinogenesis, highlighting its relation to both tumor regression and progression. In particular, the “inflammatory system”, made of innate and adaptive immune cells, interacts with cancer cells and their surrounding stroma. In this setting, the aim of this review is to summarize the current literature regarding the TIME of major salivary gland carcinomas (MSGCs), with particular attention on the characteristics and prognostic role of tumor infiltrating lymphocytes (TILs), the mechanisms that lead to TILs exhaustion and the important additional immune infiltrating factors that help SGC progression or remission.

Methods

A comprehensive literature search was performed concerning published articles on the role of TIME in MSGCs.

Results

In this work we summarize the advancing knowledge on TIME in SGCs by demonstrating the key prognostic and/or predictive value of specific immune features.

Conclusion

From the analysis of the current ‘status of the art’ it clearly emerges a need for precise, unambiguous phenotyping of immune cell populations, as well as a more thorough understanding of the frequencies and interactions of multiple immune cell types inside the TIME and their spatial localization (intratumoral vs. stromal).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data is available upon reasonable request from the corresponding author.

Code Availability

None.

References

  1. De Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37. https://doi.org/10.1038/nrc1782

    Article  CAS  PubMed  Google Scholar 

  2. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. https://doi.org/10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  3. St Paul M, Ohashi PS (2020) The roles of CD8+ T cell subsets in antitumor immunity. Trends Cell Biol 30(9):695–704. https://doi.org/10.1016/j.tcb.2020.06.003

    Article  CAS  PubMed  Google Scholar 

  4. Pardoll DM, Topalian SL (1998) The role of CD4+ T cell responses in antitumor immunity. Curr Opin Immunol 10(5):588–594. https://doi.org/10.1016/s0952-7915(98)80228-8

    Article  CAS  PubMed  Google Scholar 

  5. Kurts C, Carbone FR, Barnden M et al (1997) CD4+ T cell help impairs CD8+ T cell deletion induced by cross-presentation of self-antigens and favors autoimmunity. J Exp Med 186(12):2057–2062. https://doi.org/10.1084/jem.186.12.2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562. https://doi.org/10.1146/annurev.immunol.21.120601.141122

    Article  CAS  PubMed  Google Scholar 

  7. Shibuya TY, Nugyen N, McLaren CE et al (2002) Clinical significance of poor CD3 response in head and neck cancer. Clin Cancer Res 8(3):745–751

    CAS  PubMed  Google Scholar 

  8. Russell S, Angell T, Lechner M et al (2013) Immune cell infiltration patterns and survival in head and neck squamous cell carcinoma. Head Neck Oncol 5(3):24

    PubMed  Google Scholar 

  9. Näsman A, Romanitan M, Nordfors C et al (2012) Tumor infiltrating CD8+ and Foxp3+ lymphocytes correlate to clinical outcome and human papillomavirus (HPV) status in tonsillar cancer. PLoS ONE 7(6):e38711. https://doi.org/10.1371/journal.pone.0038711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ward MJ, Thirdborough SM, Mellows T et al (2014) Tumour-infiltrating lymphocytes predict for outcome in HPV-positive oropharyngeal cancer. Br J Cancer 110(2):489–500. https://doi.org/10.1038/bjc.2013.639

    Article  CAS  PubMed  Google Scholar 

  11. Rodrigo JP, Sánchez-Canteli M, López F et al (2021) Tumor-infiltrating lymphocytes in the tumor microenvironment of laryngeal squamous cell carcinoma: systematic review and meta-analysis. Biomedicines 9(5):486. https://doi.org/10.3390/biomedicines9050486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun W, Li WJ, Fu QL et al (2015) Functionally distinct subsets of CD4+ regulatory T cells in patients with laryngeal squamous cell carcinoma are indicative of immune deregulation and disease progression. Oncol Rep 33(1):354–362. https://doi.org/10.3892/or.2014.3553

    Article  CAS  PubMed  Google Scholar 

  13. Skálová A, Hyrcza MD, Leivo I (2022) Update from the 5th edition of the World Health Organization Classification of head and neck tumors: salivary glands. Head Neck Pathol 16(1):40–53. https://doi.org/10.1007/s12105-022-01420-1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sarradin V, Siegfried A, Uro-Coste E, Delord JP (2018) Classification de l’OMS 2017 des tumeurs de la tête et du cou : principales nouveautés et mise à jour des méthodes diagnostiques [WHO classification of head and neck tumours 2017: main novelties and update of diagnostic methods]. Bull Cancer 105(6):596–602. https://doi.org/10.1016/j.bulcan.2018.04.004

    Article  PubMed  Google Scholar 

  15. Young A, Okuyemi OT (2022) Malignant salivary gland tumors. StatPearls Publishing, Treasure Island

    Google Scholar 

  16. Carlson ER, McCoy JM (2017) Margins for benign salivary gland neoplasms of the head and neck. Oral Maxillofac Surg Clin N Am 29(3):325–340. https://doi.org/10.1016/j.coms.2017.03.009

    Article  Google Scholar 

  17. Andreasen S, Bjørndal K, Agander TK, Wessel I, Homøe P (2016) Tumors of the sublingual gland: a national clinicopathologic study of 29 cases. Eur Arch Otorhinolaryngol 273(11):3847–3856. https://doi.org/10.1007/s00405-016-4000-y

    Article  PubMed  Google Scholar 

  18. Seethala RR (2011) Histologic grading and prognostic biomarkers in salivary gland carcinomas. Adv Anat Pathol 18(1):29–45. https://doi.org/10.1097/PAP.0b013e318202645a

    Article  PubMed  Google Scholar 

  19. Lima RA, Tavares MR, Dias FL et al (2005) Clinical prognostic factors in malignant parotid gland tumors. Otolaryngol Head Neck Surg 133(5):702–708. https://doi.org/10.1016/j.otohns.2005.08.001

    Article  PubMed  Google Scholar 

  20. Blankenstein T, Coulie PG, Gilboa E, Jaffee EM (2012) The determinants of tumour immunogenicity. Nat Rev Cancer 12(4):307–313. https://doi.org/10.1038/nrc3246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sato F, Ono T, Kawahara A et al (2021) Prognostic value of tumor proportion score in salivary gland carcinoma. Laryngoscope 131(5):E1481–E1488. https://doi.org/10.1002/lary.29120

    Article  CAS  PubMed  Google Scholar 

  22. Linxweiler M, Kuo F, Katabi N et al (2020) The immune microenvironment and neoantigen landscape of aggressive salivary gland carcinomas differ by subtype. Clin Cancer Res 26(12):2859–2870. https://doi.org/10.1158/1078-0432.CCR-19-3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kesar N, Winkelmann R, Oppermann J et al (2020) Prognostic impact of CD8-positive tumour-infiltrating lymphocytes and PD-L1 expression in salivary gland cancer. Oral Oncol 111:104931. https://doi.org/10.1016/j.oraloncology.2020.104931

    Article  CAS  PubMed  Google Scholar 

  24. Witte HM, Gebauer N, Lappöhn D et al (2020) Prognostic impact of PD-L1 expression in malignant salivary gland tumors as assessed by established scoring criteria: Tumor Proportion Score (TPS), Combined Positivity Score (CPS), and Immune Cell (IC) Infiltrate. Cancers (Basel) 12(4):873. https://doi.org/10.3390/cancers12040873

    Article  CAS  PubMed  Google Scholar 

  25. Alame M, Cornillot E, Cacheux V et al (2020) The molecular landscape and microenvironment of salivary duct carcinoma reveal new therapeutic opportunities. Theranostics 10(10):4383–4394. https://doi.org/10.7150/thno.42986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chatzopoulos K, Collins AR, Sotiriou S et al (2020) Increased ERBB2 gene copy numbers reveal a subset of salivary duct carcinomas with high densities of tumor infiltrating lymphocytes and PD-L1 expression. Head Neck Pathol 14(4):951–965. https://doi.org/10.1007/s12105-020-01163-x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chan TA, Yarchoan M, Jaffee E et al (2019) Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 30(1):44–56. https://doi.org/10.1093/annonc/mdy495

    Article  CAS  PubMed  Google Scholar 

  28. Sridharan V, Gjini E, Liao X et al (2016) Immune profiling of adenoid cystic carcinoma: PD-L2 expression and associations with tumor-infiltrating lymphocytes. Cancer Immunol Res 4(8):679–687. https://doi.org/10.1158/2326-6066.CIR-16-0031

    Article  CAS  PubMed  Google Scholar 

  29. Chen W, Fung AS, McIntyre JB et al (2021) Assessment of tumour infiltrating lymphocytes and Pd-l1 expression in adenoid cystic carcinoma of the salivary gland. Clin Invest Med 44(1):38–41. https://doi.org/10.25011/cim.v44i1.35218

    Article  CAS  Google Scholar 

  30. Mosconi C, de Arruda JAA, de Farias ACR et al (2019) Immune microenvironment and evasion mechanisms in adenoid cystic carcinomas of salivary glands. Oral Oncol 88:95–101. https://doi.org/10.1016/j.oraloncology.2018.11.028

    Article  PubMed  Google Scholar 

  31. Mosconi C, Oliveira GAQ, de Farias ACR et al (2020) Association of the tumor-infiltrating lymphocytes with recurrence in adenoid cystic carcinoma of salivary glands. Oral Surg Oral Med Oral Pathol Oral Radiol. https://doi.org/10.1016/j.oooo.2019.06.598

    Article  Google Scholar 

  32. Nakano T, Takizawa K, Uezato A, Taguchi K, Toh S, Masuda M (2019) Prognostic value of programed death ligand-1 and ligand-2 co-expression in salivary gland carcinomas. Oral Oncol 90:30–37. https://doi.org/10.1016/j.oraloncology.2019.01.015

    Article  CAS  PubMed  Google Scholar 

  33. Barnes L, Eveson JW, Reichart P, Sidransky D (eds) (2005) World Health Organization classification of tumours. Pathology and genetics of head and neck tumours. IARC Press, Lyon

    Google Scholar 

  34. Hiss S, Eckstein M, Segschneider P et al (2021) Tumour-infiltrating lymphocytes (TILs) and PD-L1 expression correlate with lymph node metastasis, high-grade transformation and shorter metastasis-free survival in patients with acinic cell carcinoma (AciCC) of the salivary glands. Cancers (Basel) 13(5):965. https://doi.org/10.3390/cancers13050965

    Article  CAS  PubMed  Google Scholar 

  35. Vander Poorten V, Triantafyllou A, Thompson LD et al (2016) Salivary acinic cell carcinoma: reappraisal and update. Eur Arch Otorhinolaryngol 273(11):3511–3531. https://doi.org/10.1007/s00405-015-3855-7

    Article  CAS  PubMed  Google Scholar 

  36. Schwarz S, Zenk J, Müller M et al (2012) The many faces of acinic cell carcinomas of the salivary glands: a study of 40 cases relating histological and immunohistological subtypes to clinical parameters and prognosis. Histopathology 61(3):395–408. https://doi.org/10.1111/j.1365-2559.2012.04233.x

    Article  PubMed  Google Scholar 

  37. Dublin JC, Oliver JR, Tam MM et al (2022) Nodal metastases in pediatric and adult acinic cell carcinoma of the major salivary glands. Otolaryngol Head Neck Surg 167(6):941–951. https://doi.org/10.1177/01945998221083094

    Article  PubMed  Google Scholar 

  38. Dutsch-Wicherek M, Lazar A, Tomaszewska R (2010) The involvement of RCAS1 in creating a suppressive tumor microenvironment in patients with salivary gland adenocarcinoma. Cancer Microenviron 4(1):13–21. https://doi.org/10.1007/s12307-010-0051-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spiro RH, Huvos AG, Strong EW (1982) Adenocarcinoma of salivary origin. Clinicopathologic study of 204 patients. Am J Surg 144(4):423–431. https://doi.org/10.1016/0002-9610(82)90416-0

    Article  CAS  PubMed  Google Scholar 

  40. Mosconi C, Arantes DAC, Gonçalves AS et al (2017) Immunohistochemical investigations on the expression of programmed cell death ligand 1, human leukocyte antigens G and E, and granzyme B in intraoral mucoepidermoid carcinoma. Arch Oral Biol 83:55–62. https://doi.org/10.1016/j.archoralbio.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  41. Zhang N, Bevan MJ (2011) CD8(+) T cells: foot soldiers of the immune system. Immunity 35(2):161–168. https://doi.org/10.1016/j.immuni.2011.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Greten FR, Grivennikov SI (2019) Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51(1):27–41. https://doi.org/10.1016/j.immuni.2019.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Speight PM, Barrett AW (2002) Salivary gland tumours. Oral Dis 8(5):229–240. https://doi.org/10.1034/j.1601-0825.2002.02870.x

    Article  CAS  PubMed  Google Scholar 

  44. Chang H, Kim JS, Choi YJ et al (2017) Overexpression of PD-L2 is associated with shorter relapse-free survival in patients with malignant salivary gland tumors. Onco Targets Ther 10:2983–2992. https://doi.org/10.2147/OTT.S134589

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lemound J, Schenk M, Keller G et al (2016) Cytogenetic and immunohistochemical biomarker profiling of therapy-relevant factors in salivary gland carcinomas. J Oral Pathol Med 45(9):655–663. https://doi.org/10.1111/jop.12429

    Article  CAS  PubMed  Google Scholar 

  46. Haghshenas MR, Khademi B, Faghih Z, Ghaderi A, Erfani N (2015) Immune regulatory cells and IL17-producing lymphocytes in patients with benign and malignant salivary gland tumors. Immunol Lett 164(2):109–116. https://doi.org/10.1016/j.imlet.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  47. Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F (2014) T helper cells plasticity in inflammation. Cytometry A 85(1):36–42. https://doi.org/10.1002/cyto.a.22348

    Article  CAS  PubMed  Google Scholar 

  48. Mojic M, Takeda K, Hayakawa Y (2017) The dark side of IFN-γ: its role in promoting cancer immunoevasion. Int J Mol Sci 19(1):89. https://doi.org/10.3390/ijms19010089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Haghshenas MR, Khademi B, Ashraf MJ, Ghaderi A, Erfani N (2016) Helper and cytotoxic T-cell subsets (Th1, Th2, Tc1, and Tc2) in benign and malignant salivary gland tumors. Oral Dis 22(6):566–572. https://doi.org/10.1111/odi.12496

    Article  CAS  PubMed  Google Scholar 

  50. Schuster M, Plaza-Sirvent C, Visekruna A, Huehn J, Schmitz I (2019) Generation of Foxp3+CD25- regulatory T-cell precursors requires c-Rel and IκBNS. Front Immunol 10:1583. https://doi.org/10.3389/fimmu.2019.01583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schvartsman G, Bell D, Rubin ML et al (2021) The tumor immune contexture of salivary duct carcinoma. Head Neck 43(4):1213–1219. https://doi.org/10.1002/hed.26587

    Article  PubMed  Google Scholar 

  52. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9(5):503–510. https://doi.org/10.1038/ni1582

    Article  CAS  PubMed  Google Scholar 

  53. Hellquist HB, Karlsson MG, Viale G et al (1996) Bcl-2 immunoreactivity in salivary gland neoplasms is unrelated to the expression of mRNA for natural killer cell stimulatory cytokines interleukin (IL)-2 and IL-12. Virchows Arch 429(2–3):149–158. https://doi.org/10.1007/BF00192437

    Article  CAS  PubMed  Google Scholar 

  54. Dieu-Nosjean MC, Giraldo NA, Kaplon H, Germain C, Fridman WH, Sautès-Fridman C (2016) Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol Rev 271(1):260–275. https://doi.org/10.1111/imr.12405

    Article  CAS  PubMed  Google Scholar 

  55. Gavrielatou N, Vathiotis I, Economopoulou P, Psyrri A (2021) The role of B cells in head and neck cancer. Cancers (Basel) 13(21):5383. https://doi.org/10.3390/cancers13215383

    Article  CAS  PubMed  Google Scholar 

  56. Nelson BH (2010) CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol 185(9):4977–4982. https://doi.org/10.4049/jimmunol.1001323

    Article  CAS  PubMed  Google Scholar 

  57. Zhou X, Su YX, Lao XM, Liang YJ, Liao GQ (2016) CD19(+)IL-10(+) regulatory B cells affect survival of tongue squamous cell carcinoma patients and induce resting CD4(+) T cells to CD4(+)Foxp3(+) regulatory T cells. Oral Oncol 53:27–35. https://doi.org/10.1016/j.oraloncology.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  58. Blank CU, Haining WN, Held W et al (2019) Defining “T cell exhaustion.” Nat Rev Immunol 19(11):665–674. https://doi.org/10.1038/s41577-019-0221-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499. https://doi.org/10.1038/ni.2035

    Article  CAS  PubMed  Google Scholar 

  60. Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034. https://doi.org/10.1084/jem.192.7.1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fang Q, Wu Y, Du W, Zhang X, Chen D (2021) Incidence and prognostic significance of PD-L1 expression in high-grade salivary gland carcinoma [published correction appears in Front Oncol. 2021 Dec 30;11:836903]. Front Oncol 11:701181. https://doi.org/10.3389/fonc.2021.701181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vital D, Ikenberg K, Moch H, Rössle M, Huber GF (2019) The expression of PD-L1 in salivary gland carcinomas. Sci Rep 9(1):12724. https://doi.org/10.1038/s41598-019-49215-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mukaigawa T, Hayashi R, Hashimoto K, Ugumori T, Hato N, Fujii S (2016) Programmed death ligand-1 expression is associated with poor disease free survival in salivary gland carcinomas. J Surg Oncol 114(1):36–43. https://doi.org/10.1002/jso.24266

    Article  CAS  PubMed  Google Scholar 

  64. Kuchar M, Strizova Z, Capkova L et al (2021) The periphery of salivary gland carcinoma tumors reveals a PD-L1/PD-1 biomarker niche for the evaluation of disease severity and tumor-immune system interplay. Biomedicines 9(2):97. https://doi.org/10.3390/biomedicines9020097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guazzo E, Cooper C, Wilkinson L et al (2021) Therapeutic implications of immune-profiling and EGFR expression in salivary gland carcinoma. Head Neck 43(3):768–777. https://doi.org/10.1002/hed.26529

    Article  PubMed  Google Scholar 

  66. Arolt C, Meyer M, Ruesseler V et al (2020) Lymphocyte activation gene 3 (LAG3) protein expression on tumor-infiltrating lymphocytes in aggressive and TP53-mutated salivary gland carcinomas. Cancer Immunol Immunother 69(7):1363–1373. https://doi.org/10.1007/s00262-020-02551-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nguyen LT, Ohashi PS (2015) Clinical blockade of PD1 and LAG3–potential mechanisms of action. Nat Rev Immunol 15(1):45–56. https://doi.org/10.1038/nri3790

    Article  CAS  PubMed  Google Scholar 

  68. Camisaschi C, Casati C, Rini F et al (2010) LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. J Immunol 184(11):6545–6551. https://doi.org/10.4049/jimmunol.0903879

    Article  CAS  PubMed  Google Scholar 

  69. Even C, Delord JP, Price KA et al (2022) Evaluation of pembrolizumab monotherapy in patients with previously treated advanced salivary gland carcinoma in the phase 2 KEYNOTE-158 study. Eur J Cancer 171:259–268. https://doi.org/10.1016/j.ejca.2022.05.007

    Article  CAS  PubMed  Google Scholar 

  70. Mahmood U, Bang A, Chen YH et al (2021) A randomized phase 2 study of pembrolizumab with or without radiation in patients with recurrent or metastatic adenoid cystic carcinoma. Int J Radiat Oncol Biol Phys 109(1):134–144. https://doi.org/10.1016/j.ijrobp.2020.08.018

    Article  Google Scholar 

  71. Rodriguez CP, Wu QV, Voutsinas J et al (2020) A phase II trial of pembrolizumab and vorinostat in recurrent metastatic head and neck squamous cell carcinomas and salivary gland cancer. Clin Cancer Res 26(4):837–845. https://doi.org/10.1158/1078-0432.CCR-19-2214

    Article  CAS  PubMed  Google Scholar 

  72. Ross JS, Gay LM, Wang K et al (2017) Comprehensive genomic profiles of metastatic and relapsed salivary gland carcinomas are associated with tumor type and reveal new routes to targeted therapies. Ann Oncol 28(10):2539–2546. https://doi.org/10.1093/annonc/mdx399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fayette J, Even C, Digue L et al (2019) NISCAHN: a phase II, multi-center nonrandomized trial aiming at evaluating nivolumab (N) in two cohorts of patients (pts) with recurrent/metastatic (R/M) salivary gland carcinoma of the head and neck (SGCHN), on behalf of the Unicancer Head & Neck Group. J Clin Oncol 37:6083. https://doi.org/10.1200/JCO.2019.37.15_suppl.6083

    Article  Google Scholar 

  74. Pittet MJ, Michielin O, Migliorini D (2022) Clinical relevance of tumour-associated macrophages [published correction appears in Nat Rev Clin Oncol. 2022 Apr 6]. Nat Rev Clin Oncol 19(6):402–421. https://doi.org/10.1038/s41571-022-00620-6

    Article  PubMed  Google Scholar 

  75. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416. https://doi.org/10.1038/nrclinonc.2016.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555. https://doi.org/10.1016/s1471-4906(02)02302-5

    Article  CAS  PubMed  Google Scholar 

  77. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196(3):254–265. https://doi.org/10.1002/path.1027

    Article  CAS  PubMed  Google Scholar 

  79. Donadon M, Torzilli G, Cortese N et al (2020) Macrophage morphology correlates with single-cell diversity and prognosis in colorectal liver metastasis. J Exp Med 217(11):e20191847. https://doi.org/10.1084/jem.20191847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barros MH, Hauck F, Dreyer JH, Kempkes B, Niedobitek G (2013) Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS ONE 8(11):e80908. https://doi.org/10.1371/journal.pone.0080908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shieh YS, Hung YJ, Hsieh CB, Chen JS, Chou KC, Liu SY (2009) Tumor-associated macrophage correlated with angiogenesis and progression of mucoepidermoid carcinoma of salivary glands. Ann Surg Oncol 16(3):751–760. https://doi.org/10.1245/s10434-008-0259-6

    Article  PubMed  Google Scholar 

  82. Yang Z, Li H, Wang W et al (2019) CCL2/CCR2 Axis promotes the progression of salivary adenoid cystic carcinoma via recruiting and reprogramming the tumor-associated macrophages. Front Oncol 9:231. https://doi.org/10.3389/fonc.2019.00231

    Article  PubMed  PubMed Central  Google Scholar 

  83. Li C, Chen Q, Tian Z et al (2019) Expression of MIF, Beclin1, and LC3 in human salivary gland adenoid cystic carcinoma and its prognostic value. Medicine (Baltimore) 98(20):e15402. https://doi.org/10.1097/MD.0000000000015402

    Article  CAS  PubMed  Google Scholar 

  84. Liu H, Chen G, Zhang W et al (2013) Overexpression of macrophage migration inhibitory factor in adenoid cystic carcinoma: correlation with enhanced metastatic potential. J Cancer Res Clin Oncol 139(2):287–295. https://doi.org/10.1007/s00432-012-1330-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando De Virgilio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

For this type of study informed consent is not required.

Consent for Publication

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veneroni, M.V., Festa, B.M., Costantino, A. et al. Prognostic Impact of Tumor Immune Microenvironment and Its Predictive Role in Salivary Gland Cancer. Head and Neck Pathol 17, 515–527 (2023). https://doi.org/10.1007/s12105-023-01528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-023-01528-y

Keywords

Navigation