Skip to main content

Advertisement

Log in

Increased ERBB2 Gene Copy Numbers Reveal a Subset of Salivary Duct Carcinomas with High Densities of Tumor Infiltrating Lymphocytes and PD-L1 Expression

  • Original Paper
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

Salivary duct carcinoma (SDC) commonly expresses androgen receptor (AR) and HER2, giving rise to treatment implications. SDC may also express programmed-death-ligand-1 (PD-L1), a predictive marker of response to checkpoint inhibitors. PD-L1 can be associated with genomic instability and high density of tumor infiltrating lymphocytes (TILs). Evaluation of HER2 immunohistochemistry (IHC) in SDC is not standardized, and relationships between ERBB2 copy numbers, PD-L1 expression and TILs in SDC are unknown. We evaluated 32 SDCs for HER2, AR and PD-L1 expression (IHC), ERBB2 status (FISH) and TILs (slide review). HER2 was scored with three different systems (breast, gastric, proposed salivary gland). PD-L1 was evaluated with the combined positive score. Most patients were older men, presenting at advanced clinical stage with nodal or distant metastases. During follow-up (mean 5 years, range 6 months to 21 years), 25 of the 32 patients (78%) died of SDC. We propose a HER2 IHC scoring system which accurately predicts underlying ERBB2 amplification or increased copy numbers in SDC. Most tumors had increased ERBB2 copy numbers (19/32 amplification, 6/32 aneusomy), a finding associated with higher TIL densities (p = 0.045) and PD-L1 expression (p = 0.025). Patients with TILs ≥ 40% had better prognoses (Log-Rank p = 0.013), with TILs being favorable prognosticators in univariate analysis (Hazard ratio: 0.18, p = 0.024). A subset of SDCs with increased ERBB2 copy numbers have higher TILs and PD-L1 expression. TILs ≥ 40% are associated with better prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SDC:

Salivary duct carcinoma

AR:

Androgen receptor

FISH:

Fluorescent in situ hybridization

IHC:

Immunohistochemistry

PD-L1:

Programmed death-ligand 1

PD-1:

Programmed death 1

TILs:

Tumor infiltrating lymphocytes

FFPE:

Formalin fixed paraffin embedded

H&E:

Hematoxylin and eosin

CAP:

College of American Pathologists

CPS:

Combined positive score

ASCO:

American Society of Clinical Oncology

PA:

Pleomorphic adenoma

References

  1. Gilbert MR, Sharma A, Schmitt NC, et al. A 20-year review of 75 cases of salivary duct carcinoma. JAMA Otolaryngol Head Neck Surg. 2016;142:489–95.

    PubMed  PubMed Central  Google Scholar 

  2. Kleinsasser O, Klein HJ. Hubner G [Salivary duct carcinoma. A group of salivary gland tumors analogous to mammary duct carcinoma]. Arch Klin Exp Ohren Nasen Kehlkopfheilkd. 1968;192:100–5.

    CAS  PubMed  Google Scholar 

  3. Jayaprakash V, Merzianu M, Warren GW, et al. Survival rates and prognostic factors for infiltrating salivary duct carcinoma: analysis of 228 cases from the surveillance, epidemiology, and end results database. Head Neck. 2014;36:694–701.

    PubMed  Google Scholar 

  4. Osborn V, Givi B, Lee A, et al. Characterization, treatment and outcomes of salivary ductal carcinoma using the National Cancer Database. Oral Oncol. 2017;71:41–6.

    PubMed  Google Scholar 

  5. Dalin MG, Watson PA, Ho AL, et al. androgen receptor signaling in salivary gland cancer. Cancers (Basel). 2017;9:17.

    Google Scholar 

  6. Yeoh CC, Dabab N, Rigby E, et al. Androgen receptor in salivary gland carcinoma: A review of an old marker as a possible new target. J Oral Pathol Med. 2018;47:691–5.

    CAS  PubMed  Google Scholar 

  7. Skalova A, Starek I, Vanecek T, et al. Expression of HER-2/neu gene and protein in salivary duct carcinomas of parotid gland as revealed by fluorescence in-situ hybridization and immunohistochemistry. Histopathology. 2003;42:348–56.

    CAS  PubMed  Google Scholar 

  8. Guo W, Wang W, Zhu Y, et al. HER2 status in molecular apocrine breast cancer: associations with clinical, pathological, and molecular features. Int J Clin Exp Pathol. 2015;8:8008–177.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dalin MG, Desrichard A, Katabi N, et al. Comprehensive molecular characterization of salivary duct carcinoma reveals actionable targets and similarity to apocrine breast cancer. Clin Cancer Res. 2016;22:4623–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jaspers HC, Verbist BM, Schoffelen R, et al. Androgen receptor-positive salivary duct carcinoma: a disease entity with promising new treatment options. J Clin Oncol. 2011;29:e473–e476476.

    PubMed  Google Scholar 

  11. Boon E, van Boxtel W, Buter J, et al. Androgen deprivation therapy for androgen receptor-positive advanced salivary duct carcinoma: a nationwide case series of 35 patients in The Netherlands. Head Neck. 2018;40:605–13.

    PubMed  Google Scholar 

  12. Takahashi H, Tada Y, Saotome T, et al. Phase II trial of trastuzumab and docetaxel in patients with human epidermal growth factor receptor 2-positive salivary duct carcinoma. J Clin Oncol. 2019;37:125–34.

    CAS  PubMed  Google Scholar 

  13. Li BT, Shen R, Offin M, et al. Ado-trastuzumab emtansine in patients with HER2 amplified salivary gland cancers (SGCs): results from a phase II basket trial. J Clin Oncol. 2019;37:6001.

    Google Scholar 

  14. Wolff AC, Hammond MEH, Allison KH, et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline focused update. Arch Pathol Lab Med. 2018;142:1364–82.

    PubMed  Google Scholar 

  15. Hofmann M, Stoss O, Shi D, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology. 2008;52:797–805.

    CAS  PubMed  Google Scholar 

  16. Bartley AN, Washington MK, Ventura CB, et al. HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: guideline from the College of American Pathologists, American Society for Clinical Pathology, and American Society of Clinical Oncology. Arch Pathol Lab Med. 2016;140:1345–63.

    PubMed  Google Scholar 

  17. Glisson B, Colevas AD, Haddad R, et al. HER2 expression in salivary gland carcinomas: dependence on histological subtype. Clin Cancer Res. 2004;10:944–6.

    CAS  PubMed  Google Scholar 

  18. Cornolti G, Ungari M, Morassi ML, et al. Amplification and overexpression of her2/neu gene and HER2/neu protein in salivary duct carcinoma of the parotid gland. Arch Otolaryngol Head Neck Surg. 2007;133:1031–6.

    PubMed  Google Scholar 

  19. Webb ES, Liu P, Baleeiro R, et al. Immune checkpoint inhibitors in cancer therapy. J Biomed Res. 2018;32:317–26.

    PubMed  Google Scholar 

  20. Dong H, Zhu G, Tamada K, et al. B7–H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5:1365–9.

    CAS  PubMed  Google Scholar 

  21. Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 2016;375:1767–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mukaigawa T, Hayashi R, Hashimoto K, et al. Programmed death ligand-1 expression is associated with poor disease free survival in salivary gland carcinomas. J Surg Oncol. 2016;114:36–433.

    CAS  PubMed  Google Scholar 

  23. Nakano T, Takizawa K, Uezato A, et al. Prognostic value of programed death ligand-1 and ligand-2 co-expression in salivary gland carcinomas. Oral Oncol. 2019;90:30–7.

    CAS  PubMed  Google Scholar 

  24. Hamza A, Roberts D, Su S, et al. PD-L1 expression by immunohistochemistry in salivary duct carcinoma. Ann Diagn Pathol. 2019;40:49–52.

    PubMed  PubMed Central  Google Scholar 

  25. Cohen RB, Delord JP, Doi T, et al. Pembrolizumab for the treatment of advanced salivary gland carcinoma: findings of THE Phase 1b KEYNOTE-028 study. Am J Clin Oncol. 2018. https://doi.org/10.1097/COC.0000000000000429.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vassilakopoulou M, Avgeris M, Velcheti V, et al. Evaluation of PD-L1 expression and associated tumor-infiltrating lymphocytes in laryngeal squamous cell carcinoma. Clin Cancer Res. 2016;22:704–13.

    CAS  PubMed  Google Scholar 

  27. Kim A, Lee SJ, Kim YK, et al. Programmed death-ligand 1 (PD-L1) expression in tumour cell and tumour infiltrating lymphocytes of HER2-positive breast cancer and its prognostic value. Sci Rep. 2017;7:11671.

    PubMed  PubMed Central  Google Scholar 

  28. Naito Y, Saito K, Shiiba K, et al. CD8+ T Cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998;58:3491–4.

    CAS  PubMed  Google Scholar 

  29. Kotoula V, Chatzopoulos K, Lakis S, et al. Tumors with high-density tumor infiltrating lymphocytes constitute a favorable entity in breast cancer: a pooled analysis of four prospective adjuvant trials. Oncotarget. 2016;7:5074–87.

    PubMed  Google Scholar 

  30. Fu Q, Chen N, Ge C, et al. Prognostic value of tumor-infiltrating lymphocytes in melanoma: a systematic review and meta-analysis. Oncoimmunology. 2019;8:1593806.

    PubMed  PubMed Central  Google Scholar 

  31. Hendry S, Salgado R, Gevaert T, et al. Assessing tumor-infiltrating lymphocytes in solid tumors: A practical review for pathologists and proposal for a standardized method from the international immunooncology biomarkers working group: Part 1: Assessing the host immune response, TILs in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv Anat Pathol. 2017;24:235–51.

    PubMed  PubMed Central  Google Scholar 

  32. Hendry S, Salgado R, Gevaert T, et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the international immunooncology biomarkers working group: Part 2: TILs in melanoma, gastrointestinal tract carcinomas, non–small cell lung carcinoma and mesothelioma, endometrial and ovarian carcinomas, squamous cell carcinoma of the head and neck, genitourinary carcinomas, and primary brain tumors. Adv Anat Pathol. 2017;24:311–35.

    PubMed  PubMed Central  Google Scholar 

  33. Dieci MV, Radosevic-Robin N, Fineberg S, et al. Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer. Semin Cancer Biol. 2018;52:16–25.

    PubMed  Google Scholar 

  34. Kulangara K, Zhang N, Corigliano E, et al. Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch Pathol Lab Med. 2019;143:330–7.

    CAS  PubMed  Google Scholar 

  35. Kulangara K, Hanks DA, Waldroup S, et al. Development of the combined positive score (CPS) for the evaluation of PD-L1 in solid tumors with the immunohistochemistry assay PD-L1 IHC 22C3 pharmDx. J Clin Oncol. 2017;35:e14589–e1458914589.

    Google Scholar 

  36. Huang Y, Ma C, Zhang Q, et al. CD4+ and CD8+ T cells have opposing roles in breast cancer progression and outcome. Oncotarget. 2015;6:17462–78.

    PubMed  PubMed Central  Google Scholar 

  37. Wang S, Hossein Saboorian M, Frenkel EP, et al. Aneusomy 17 in breast cancer: its role in HER-2/neu protein expression and implication for clinical assessment of HER-2/neu status. Mod Pathol. 2002;15:137–45.

    PubMed  Google Scholar 

  38. Stodulski D, Mikaszewski B, Majewska H, et al. Parotid salivary duct carcinoma: a single institution's 20-year experience. Eur Arch Otorhinolaryngol. 2019;276:2031–8.

    PubMed  PubMed Central  Google Scholar 

  39. Boon E, Bel M, van Boxtel W, et al. A clinicopathological study and prognostic factor analysis of 177 salivary duct carcinoma patients from The Netherlands. Int J Cancer. 2018;143:758–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnston ML, Huang SH, Waldron JN, et al. Salivary duct carcinoma: Treatment, outcomes, and patterns of failure. Head Neck. 2016;38(Suppl 1):E820–E826826.

    PubMed  Google Scholar 

  41. Martins C, Fonseca I, Roque L, et al. PLAG1 gene alterations in salivary gland pleomorphic adenoma and carcinoma ex-pleomorphic adenoma: a combined study using chromosome banding, in situ hybridization and immunocytochemistry. Mod Pathol. 2005;18:1048–55.

    CAS  PubMed  Google Scholar 

  42. Bahrami A, Dalton JD, Shivakumar B, et al. PLAG1 alteration in carcinoma ex pleomorphic adenoma: immunohistochemical and fluorescence in situ hybridization studies of 22 cases. Head Neck Pathol. 2012;6:328–35.

    PubMed  PubMed Central  Google Scholar 

  43. Hiraoka K, Miyamoto M, Cho Y, et al. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer. 2006;94:275–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ye S-L, Li X-Y, Zhao K, et al. High expression of CD8 predicts favorable prognosis in patients with lung adenocarcinoma: A cohort study. Medicine (Baltimore). 2017;96:e6472.

    CAS  Google Scholar 

  45. Kwak Y, Koh J, Kim D-W, et al. Immunoscore encompassing CD3+ and CD8+ T cell densities in distant metastasis is a robust prognostic marker for advanced colorectal cancer. Oncotarget. 2016;7:81778–90.

    PubMed  PubMed Central  Google Scholar 

  46. Sato E, Olson SH, Ahn J, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA. 2005;102:18538–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kondratiev S, Sabo E, Yakirevich E, et al. Intratumoral CD8+ T lymphocytes as a prognostic factor of survival in endometrial carcinoma. Clin Cancer Res. 2004;10:4450–6.

    PubMed  Google Scholar 

  48. Lee HE, Chae SW, Lee YJ, et al. Prognostic implications of type and density of tumour-infiltrating lymphocytes in gastric cancer. Br J Cancer. 2008;99:1704–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Starska K, Glowacka E, Kulig A, et al. Prognostic value of the immunological phenomena and relationship with clinicopathological characteristics of the tumor–the expression of the early CD69+, CD71+ and the late CD25+, CD26+, HLA/DR+ activation markers on T CD4+ and CD8+ lymphocytes in squamous cell laryngeal carcinoma. Part II. Folia Histochem Cytobiol. 2011;49:593–603.

    CAS  PubMed  Google Scholar 

  50. Karpathiou G, Casteillo F, Giroult JB, et al. Prognostic impact of immune microenvironment in laryngeal and pharyngeal squamous cell carcinoma: Immune cell subtypes, immuno-suppressive pathways and clinicopathologic characteristics. Oncotarget. 2017;8:19310–22.

    PubMed  Google Scholar 

  51. Chen W-Y, Wu C-T, Wang C-W, et al. Prognostic significance of tumor-infiltrating lymphocytes in patients with operable tongue cancer. Radiat Oncol (London, England). 2018;13:157.

    Google Scholar 

  52. Karja VJ, Syrjanen KJ, Syrjanen SM. Immunocompetent cells in benign and malignant salivary gland tumors. Gen Diagn Pathol. 1996;142:75–81.

    CAS  PubMed  Google Scholar 

  53. Chang H, Kim JS, Choi YJ, et al. Overexpression of PD-L2 is associated with shorter relapse-free survival in patients with malignant salivary gland tumors. Onco Targets Ther. 2017;10:2983–92.

    PubMed  PubMed Central  Google Scholar 

  54. Wikby A, Månsson IA, Johansson B, et al. The immune risk profile is associated with age and gender: findings from three Swedish population studies of individuals 20–100 years of age. Biogerontology. 2008;9:299–308.

    PubMed  Google Scholar 

  55. Amadori A, Zamarchi R, De Silvestro G, et al. Genetic control of the CD4/CD8 T-cell ratio in humans. Nat Med. 1995;1:1279–83.

    CAS  PubMed  Google Scholar 

  56. Van der Leun AM, Thommen DS, Schumacher TN. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 2020;20:218–32.

    PubMed  PubMed Central  Google Scholar 

  57. Chatzopoulos K, Kotoula V, Manoussou K, et al. Tumor infiltrating lymphocytes and CD8+ T cell subsets as prognostic markers in patients with surgically treated laryngeal squamous cell carcinoma. Head Neck Pathol. 2019. https://doi.org/10.1007/s12105-019--01101-6.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mitani Y, Rao PH, Maity SN, et al. Alterations associated with androgen receptor gene activation in salivary duct carcinoma of both sexes: potential therapeutic ramifications. Clin Cancer Res. 2014;20:6570–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Augello MA, Hickey TE, Knudsen KE. FOXA1: master of steroid receptor function in cancer. EMBO J. 2011;30:3885–944.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wen S, Niu Y, Lee SO, et al. Targeting fatty acid synthase with ASC-J9 suppresses proliferation and invasion of prostate cancer cells. Mol Carcinog. 2016;55:2278–90.

    CAS  PubMed  Google Scholar 

  61. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    CAS  PubMed  Google Scholar 

  62. Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365:1273–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Schmitt NC, Kang H, Sharma A. Salivary duct carcinoma: An aggressive salivary gland malignancy with opportunities for targeted therapy. Oral Oncol. 2017;74:40–8.

    PubMed  PubMed Central  Google Scholar 

  64. Williams MD, Roberts DB, Kies MS, et al. Genetic and expression analysis of HER-2 and EGFR genes in salivary duct carcinoma: empirical and therapeutic significance. Clin Cancer Res. 2010;16:2266–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yan M, Schwaederle M, Arguello D, et al. HER2 expression status in diverse cancers: review of results from 37,992 patients. Cancer Metastasis Rev. 2015;34:157–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Leong AS. Quantitation in immunohistology: fact or fiction? A discussion of variables that influence results. Appl Immunohistochem Mol Morphol. 2004;12:1–7.

    PubMed  Google Scholar 

  67. Seidal T, Balaton AJ, Battifora H. Interpretation and quantification of immunostains. Am J Surg Pathol. 2001;25:1204–7.

    CAS  PubMed  Google Scholar 

  68. Meyerholz DK, Beck AP. Principles and approaches for reproducible scoring of tissue stains in research. Lab Invest. 2018;98:844–55.

    PubMed  Google Scholar 

  69. Dogan S, Ng CKY, Xu B, et al. The repertoire of genetic alterations in salivary duct carcinoma including a novel HNRNPH3-ALK rearrangement. Hum Pathol. 2019;88:66–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chumsri S, Weidler J, Ali S, et al. Prolonged response to trastuzumab in a patient with HER2-nonamplified breast cancer with elevated HER2 dimerization harboring an ERBB2 S310F mutation. J Natl Compr Canc Netw. 2015;13:1066–70.

    CAS  PubMed  Google Scholar 

  71. Khoo TK, Yu B, Smith JA, et al. Somatic mutations in salivary duct carcinoma and potential therapeutic targets. Oncotarget. 2017;8:75893–903.

    PubMed  PubMed Central  Google Scholar 

  72. Bose R, Kavuri SM, Searleman AC, et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 2013;3:224–37.

    CAS  PubMed  Google Scholar 

  73. Barnes L, Rao U, Krause J, et al. Salivary duct carcinoma. Part I. A clinicopathologic evaluation and DNA image analysis of 13 cases with review of the literature. Oral Surg Oral Med Oral Pathol. 1994;78:64–73.

    CAS  PubMed  Google Scholar 

  74. Grenko RT, Gemryd P, Tytor M, et al. Salivary duct carcinoma. Histopathology. 1995;26:261–6.

    CAS  PubMed  Google Scholar 

  75. Duesberg P, Rausch C, Rasnick D, et al. Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proc Natl Acad Sci USA. 1998;95:13692–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zasadil LM, Britigan EMC, Weaver BA. 2n or not 2n: aneuploidy, polyploidy and chromosomal instability in primary and tumor cells. Semin Cell Dev Biol. 2013;24:370–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yaghmour G, Pandey M, Ireland C, et al. Role of genomic instability in immunotherapy with checkpoint inhibitors. Anticancer Res. 2016;36:4033–8.

    CAS  PubMed  Google Scholar 

  78. Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 2016;17:e542–e551551.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sato F, Akiba J, Kawahara A, et al. The expression of programed death ligand-1 could be related with unfavorable prognosis in salivary duct carcinoma. J Oral Pathol Med. 2018;47:683–90.

    CAS  PubMed  Google Scholar 

  80. Xu B, Jungbluth AA, Frosina D, et al. Immune microenvironment and expression of PD-L1, PD-1, cancer testis antigen PRAME and MHC I in salivary duct carcinoma. Histopathology. 2019;75:672–82.

    PubMed  PubMed Central  Google Scholar 

  81. Topalian SL, Taube JM, Anders RA, et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16:275–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bradburn MJ, Clark TG, Love SB, et al. Survival analysis Part III: multivariate data analysis—choosing a model and assessing its adequacy and fit. Br J Cancer. 2003;89:605–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Troncone G, Gridelli C. The reproducibility of PD-L1 scoring in lung cancer: can the pathologists do better? Transl Lung Cancer Res. 2017;6:S74–S7777.

    PubMed  PubMed Central  Google Scholar 

  84. Scheel AH, Schäfer SC. Current PD-L1 immunohistochemistry for non-small cell lung cancer. J Thorac Dis. 2018;10:1217–9.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Mohamed A. Ibrahim with the Mayo Clinic DLMP Research and Innovation Office for the administrative support.

Funding

Institutional Research Funds from the Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN. The funders had no role in designing the study, collecting and analyzing the data, drafting the manuscript or making the decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

KC reviewed the histologic material, interpreted immunohistochemical stains, performed the statistical analysis and wrote the manuscript. AC participated in data interpretation and drafted portions of the manuscript. SS participated in data interpretation and critically edited the manuscript. MK collected the histologic material, reviewed immunohistochemical stains and interpreted the data. DV participated in data interpretation and critically edited the manuscript. MR interpreted the data, critically revised and edited the manuscript. DS-W assisted in data interpretation, critically revised and edited the manuscript. JL assisted in data interpretation, critically revised and edited the manuscript. PG interpreted cytogenetics data. WS interpreted cytogenetics data and guided their incorporation into the study. AC collected clinical data, critically revised and edited the manuscript. KP collected clinical data. JG designed the study, collected histologic material, interpreted immunohistochemical stains and cytogenetics data, critically reviewed and edited the manuscript.

Corresponding author

Correspondence to Joaquin J. Garcia.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest relevant to the present study to disclose.

Ethical Approval

The study was approved by the Mayo Clinic Institutional Review Board (Application Number 12-001311; Last approval date: 2/28/2017).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 124 kb)

Supplementary file2 (PDF 324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzopoulos, K., Collins, A.R., Sotiriou, S. et al. Increased ERBB2 Gene Copy Numbers Reveal a Subset of Salivary Duct Carcinomas with High Densities of Tumor Infiltrating Lymphocytes and PD-L1 Expression. Head and Neck Pathol 14, 951–965 (2020). https://doi.org/10.1007/s12105-020-01163-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-020-01163-x

Keywords

Navigation