Skip to main content

Advertisement

Log in

A new border for circadian rhythm gene NFIL3 in diverse fields of cancer

  • REVIEW ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The circadian rhythm disorder and abnormal expression of rhythm genes are related to many diseases, especially cancer. Rhythm gene NFIL3 is involved in energy metabolism and immune cell differentiation, and its aberrant expression is associated with metabolic diseases and inflammation. Previously, numerous studies have shown that aberrant NFIL3 expression is associated with tumorigenesis, progression, and chemotherapy resistance. For instance, NFIL3 performs as a nuclear transcription factor, impacts cell proliferation, represses apoptosis, and promotes cancer cell invasion and metastasis by regulating the transcription of target genes. In addition, NFIL3 expressed in cancer cells influences the type and proportion of infiltrated immune cells in the tumor microenvironment. Increased expression of NFIL3 induces the chemotherapy and immunotherapy resistance in cancer. In this review, we summarized the pathological functions of NFIL3 in tumorigenesis, cancer development, and treatment. The rhythm gene NFIL3 can be used as a promising target in cancer therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data used during the current review are available from the corresponding author on reasonable request.

Abbreviations

AMPK:

AMP-activated protein kinase

ATP:

Adenosine triphosphate

BMP:

Bone morphogenetic protein

bZIP:

Basic leucine zipper

DBP:

Albumin D-site-binding protein

DCs:

Dendritic cells

EMT:

Epithelial–mesenchymal transition

ER:

Endoplasmic reticulum

FGF21:

Fibroblast growth factor 21

FOXO:

Forkhead box

Foxp3:

Forkhead box protein p3

HDAC2:

Histone deacetylase-2

HKDC1:

Hexokinase domain containing 1

IGF-2:

Insulin-like growth factor 2

M1:

Type I macrophages

M2:

Type II macrophages

NAFLD:

Non-alcoholic fatty liver disease

NFIL3:

Nuclear factor, interleukin-3 regulated

NFKBIA:

NF-κB inhibitor alpha

NF-κB:

Nuclear factor κB

NK:

Natural Killer

PEPCK:

Phosphoenolpyruvate carboxykinase

PER:

Period

PHEX:

Phosphate regulating endopeptidase homolog X-linked

PRNP:

Prion protein

PrPc:

Cellular prion protein

RASSF8:

Ras-association domain family member 8

RORγt:

Orphan nuclear receptor

SOSTDC1:

Sclerostin domain containing 1

SREBP-1c:

Sterol regulatory element-binding protein-1c

STAT3:

Signal transducer and activator of transcription 3

SUV39H1:

Suppressor of variegation 3-9 homolog 1

Th1:

T-helper1

Th17:

T-helper17

Th2:

T-helper2

TNBC:

Triple-negative breast cancer

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

Tregs:

Regulatory cells

TTFL:

Transcriptional and translational feedback loop

References

  1. Jagannath A, Taylor L, Wakaf Z, Vasudevan SR, Foster RG. The genetics of circadian rhythms, sleep and health. Hum Mol Genet. 2017;26(R2):R128–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matsui MS, Pelle E, Dong K, Pernodet N. Biological rhythms in the skin. Int J Mol Sci. 2016;17(6):801.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bollinger T, Schibler U. Circadian rhythms—from genes to physiology and disease. Swiss Med Wkly. 2014;144: w13984.

    PubMed  Google Scholar 

  4. Reszka E, Zienolddiny S. Epigenetic basis of circadian rhythm disruption in cancer. Methods Mol Biol. 2018;1856:173–201.

    Article  PubMed  Google Scholar 

  5. Ye Y, Xiang Y, Ozguc FM, Kim Y, Liu CJ, Park PK, et al. The genomic landscape and pharmacogenomic interactions of clock genes in cancer chronotherapy. Cell Syst. 2018;6(3):314-328e312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kashiwada M, Levy DM, McKeag L, Murray K, Schroder AJ, Canfield SM, et al. IL-4-induced transcription factor NFIL3/E4BP4 controls IgE class switching. Proc Natl Acad Sci U S A. 2010;107(2):821–6.

    Article  CAS  PubMed  Google Scholar 

  7. Qi J, Yu Y, Akilli Ozturk O, Holland JD, Besser D, Fritzmann J, et al. New Wnt/beta-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals. Gut. 2016;65(10):1690–701.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Kuang Z, Yu X, Ruhn KA, Kubo M, Hooper LV. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science. 2017;357(6354):912–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao Z, Yin L, Wu F, Tong X. Hepatic metabolic regulation by nuclear factor E4BP4. J Mol Endocrinol. 2021;66(1):R15–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 2001;15(8):995–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamajuku D, Shibata Y, Kitazawa M, Katakura T, Urata H, Kojima T, et al. Cellular DBP and E4BP4 proteins are critical for determining the period length of the circadian oscillator. FEBS Lett. 2011;585(14):2217–22.

    Article  CAS  PubMed  Google Scholar 

  12. Chen ST, Choo KB, Hou MF, Yeh KT, Kuo SJ, Chang JG. Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis. 2005;26(7):1241–6.

    Article  CAS  PubMed  Google Scholar 

  13. Kubo M. Diurnal rhythmicity Programs of Microbiota and transcriptional oscillation of circadian regulator, NFIL3. Front Immunol. 2020;11: 552188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou J, Li X, Zhang M, Gong J, Li Q, Shan B, et al. The aberrant expression of rhythm genes affects the genome instability and regulates the cancer immunity in pan-cancer. Cancer Med. 2020;9(5):1818–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Benito A, Gutierrez O, Pipaon C, Real PJ, Gachon F, Ritchie AE, et al. A novel role for proline- and acid-rich basic region leucine zipper (PAR bZIP) proteins in the transcriptional regulation of a BH3-only proapoptotic gene. J Biol Chem. 2006;281(50):38351–7.

    Article  CAS  PubMed  Google Scholar 

  16. Wu S, Li J, Cao M, Yang J, Li YX, Li YY. A novel integrated gene coexpression analysis approach reveals a prognostic three-transcription-factor signature for glioma molecular subtypes. BMC Syst Biol. 2016;10(Suppl 3):71.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang W, Li J, Zhang M, Yu H, Zhuang Y, Zhao L, et al. Elevated expression of the rhythm gene NFIL3 promotes the progression of TNBC by activating NF-kappaB signaling through suppression of NFKBIA transcription. J Exp Clin Cancer Res. 2022;41(1):67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blau J, Young MW. Cycling vrille expression is required for a functional Drosophila clock. Cell. 1999;99(6):661–71.

    Article  CAS  PubMed  Google Scholar 

  19. Astiz M, Heyde I, Oster H. Mechanisms of communication in the mammalian circadian timing system. Int J Mol Sci. 2019;20(2):343.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Doi M, Nakajima Y, Okano T, Fukada Y. Light-induced phase-delay of the chicken pineal circadian clock is associated with the induction of cE4bp4, a potential transcriptional repressor of cPer2 gene. Proc Natl Acad Sci U S A. 2001;98(14):8089–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Farshadi E, van der Horst GTJ, Chaves I. Molecular links between the circadian clock and the cell cycle. J Mol Biol. 2020;432(12):3515–24.

    Article  CAS  PubMed  Google Scholar 

  22. Altura RA, Inukai T, Ashmun RA, Zambetti GP, Roussel MF, Look AT. The chimeric E2A-HLF transcription factor abrogates p53-induced apoptosis in myeloid leukemia cells. Blood. 1998;92(4):1397–405.

    Article  CAS  PubMed  Google Scholar 

  23. McTiernan CF, Lemster BH, Bedi KC, Margulies KB, Moravec CS, Hsieh PN, et al. Circadian pattern of ion channel gene expression in failing human hearts. Circ Arrhythm Electrophysiol. 2021;14(1): e009254.

    Article  CAS  PubMed  Google Scholar 

  24. Savvidis C, Koutsilieris M. Circadian rhythm disruption in cancer biology. Mol Med. 2012;18:1249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Keniry M, Dearth RK, Persans M, Parsons R. New frontiers for the NFIL3 bZIP transcription factor in cancer, metabolism and beyond. Discoveries (Craiova). 2014;2(2): e15.

    Article  PubMed  Google Scholar 

  26. Pellicelli M, Taheri M, St-Louis M, Beriault V, Desgroseillers L, Boileau G, et al. PTHrP(1–34)-mediated repression of the PHEX gene in osteoblastic cells involves the transcriptional repressor E4BP4. J Cell Physiol. 2012;227(6):2378–87.

    Article  CAS  PubMed  Google Scholar 

  27. Chen B-C, Shibu MA, Kuo C-H, Shen C-Y, Chang-Lee SN, Lai C-H, et al. E4BP4 inhibits AngII-induced apoptosis in H9c2 cardiomyoblasts by activating the PI3K-Akt pathway and promoting calcium uptake. Exp Cell Res. 2018;363(2):227–34.

    Article  CAS  PubMed  Google Scholar 

  28. Tamai S, Imaizumi K, Kurabayashi N, Nguyen MD, Abe T, Inoue M, et al. Neuroprotective role of the basic leucine zipper transcription factor NFIL3 in models of amyotrophic lateral sclerosis. J Biol Chem. 2014;289(3):1629–38.

    Article  CAS  PubMed  Google Scholar 

  29. Dang F, Sun X, Ma X, Wu R, Zhang D, Chen Y, et al. Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock. Nat Commun. 2016;7:12696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tong X, Zhang D, Buelow K, Guha A, Arthurs B, Brady HJ, et al. Recruitment of histone methyltransferase G9a mediates transcriptional repression of Fgf21 gene by E4BP4 protein. J Biol Chem. 2013;288(8):5417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tong X, Li P, Zhang D, VanDommelen K, Gupta N, Rui L, et al. E4BP4 is an insulin-induced stabilizer of nuclear SREBP-1c and promotes SREBP-1c-mediated lipogenesis. J Lipid Res. 2016;57(7):1219–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang M, Zhang D, Zhao Z, Sit J, Saint-Sume M, Shabandri O, et al. Hepatic E4BP4 induction promotes lipid accumulation by suppressing AMPK signaling in response to chemical or diet-induced ER stress. FASEB J. 2020;34(10):13533–47.

    Article  CAS  PubMed  Google Scholar 

  33. Day EA, Ford RJ, Steinberg GR. AMPK as a therapeutic target for treating metabolic diseases. Trends Endocrinol Metab. 2017;28(8):545–60.

    Article  CAS  PubMed  Google Scholar 

  34. Kang G, Han HS, Koo SH. NFIL3 is a negative regulator of hepatic gluconeogenesis. Metabolism. 2017;77:13–22.

    Article  CAS  PubMed  Google Scholar 

  35. Ohta Y, Taguchi A, Matsumura T, Nakabayashi H, Akiyama M, Yamamoto K, et al. Clock gene dysregulation induced by chronic ER stress disrupts beta-cell function. EBioMedicine. 2017;18:146–56.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rijo-Ferreira F, Takahashi JS. Genomics of circadian rhythms in health and disease. Genome Med. 2019;11(1):82.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Masri S, Sassone-Corsi P. The emerging link between cancer, metabolism, and circadian rhythms. Nat Med. 2018;24(12):1795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yuan P, Yang T, Mu J, Zhao J, Yang Y, Yan Z, et al. Circadian clock gene NPAS2 promotes reprogramming of glucose metabolism in hepatocellular carcinoma cells. Cancer Lett. 2020;469:498–509.

    Article  CAS  PubMed  Google Scholar 

  39. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

    Article  CAS  PubMed  Google Scholar 

  40. Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg Effect 97 Years after Its Discovery. Cancers (Basel). 2020;12(10):2819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fuhr L, El-Athman R, Scrima R, Cela O, Carbone A, Knoop H, et al. The Circadian clock regulates metabolic phenotype rewiring via HKDC1 and modulates tumor progression and drug response in colorectal cancer. EBioMedicine. 2018;33:105–21.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim HS, Sohn H, Jang SW, Lee GR. The transcription factor NFIL3 controls regulatory T-cell function and stability. Exp Mol Med. 2019;51(7):1–15.

    PubMed  PubMed Central  Google Scholar 

  43. Male V, Nisoli I, Gascoyne DM, Brady HJ. E4BP4: an unexpected player in the immune response. Trends Immunol. 2012;33(2):98–102.

    Article  CAS  PubMed  Google Scholar 

  44. Kamizono S, Duncan GS, Seidel MG, Morimoto A, Hamada K, Grosveld G, et al. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med. 2009;206(13):2977–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Firth MA, Madera S, Beaulieu AM, Gasteiger G, Castillo EF, Schluns KS, et al. Nfil3-independent lineage maintenance and antiviral response of natural killer cells. J Exp Med. 2013;210(13):2981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Onyilagha C, Kuriakose S, Ikeogu N, Kung SKP, Uzonna JE. NK cells are critical for optimal immunity to experimental trypanosoma congolense infection. J Immunol. 2019;203(4):964–71.

    Article  CAS  PubMed  Google Scholar 

  47. Chen Z, Lund R, Aittokallio T, Kosonen M, Nevalainen O, Lahesmaa R. Identification of novel IL-4/Stat6-regulated genes in T lymphocytes. J Immunol. 2003;171(7):3627–35.

    Article  CAS  PubMed  Google Scholar 

  48. Motomura Y, Kitamura H, Hijikata A, Matsunaga Y, Matsumoto K, Inoue H, et al. The transcription factor E4BP4 regulates the production of IL-10 and IL-13 in CD4+ T cells. Nat Immunol. 2011;12(5):450–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gallo E, Katzman S, Villarino AV. IL-13-producing Th1 and Th17 cells characterize adaptive responses to both self and foreign antigens. Eur J Immunol. 2012;42(9):2322–8.

    Article  CAS  PubMed  Google Scholar 

  50. Yu X, Rollins D, Ruhn KA, Stubblefield JJ, Green CB, Kashiwada M, et al. TH17 cell differentiation is regulated by the circadian clock. Science. 2013;342(6159):727–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zielinski MR, Systrom DM, Rose NR. Fatigue, sleep, and autoimmune and related disorders. Front Immunol. 2019;10:1827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gu WB, Liu ZP, Zhou YL, Li B, Wang LZ, Dong WR, et al. The nuclear factor interleukin 3-regulated (NFIL3) transcription factor involved in innate immunity by activating NF-kappaB pathway in mud crab Scylla paramamosain. Dev Comp Immunol. 2019;101: 103452.

    Article  CAS  PubMed  Google Scholar 

  53. Liu C, Chen S, Zhang H, Chen Y, Gao Q, Chen Z, et al. Bioinformatic analysis for potential biological processes and key targets of heart failure-related stroke. J Zhejiang Univ Sci B. 2021;22(9):718–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang X, Wang Q, Wang K, Ni Q, Li H, Su Z, et al. Is immune suppression involved in the ischemic stroke? A study based on computational biology. Front Aging Neurosci. 2022;14: 830494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tang H, Tan C, Cao X, Liu Y, Zhao H, Liu Y, et al. NFIL3 facilitates neutrophil autophagy, neutrophil extracellular trap formation and inflammation during gout via REDD1-dependent mTOR inactivation. Front Med (Lausanne). 2021;8: 692781.

    Article  PubMed  Google Scholar 

  56. Zhao M, Liu Q, Liang G, Wang L, Luo S, Tang Q, et al. E4BP4 overexpression: a protective mechanism in CD4+ T cells from SLE patients. J Autoimmun. 2013;41:152–60.

    Article  CAS  PubMed  Google Scholar 

  57. Kobayashi T, Matsuoka K, Sheikh SZ, Elloumi HZ, Kamada N, Hisamatsu T, et al. NFIL3 is a regulator of IL-12 p40 in macrophages and mucosal immunity. J Immunol. 2011;186(8):4649–55.

    Article  CAS  PubMed  Google Scholar 

  58. Kobayashi T, Steinbach EC, Russo SM, Matsuoka K, Nochi T, Maharshak N, et al. NFIL3-deficient mice develop microbiota-dependent, IL-12/23-driven spontaneous colitis. J Immunol. 2014;192(4):1918–27.

    Article  CAS  PubMed  Google Scholar 

  59. Bene K, Halasz L, Nagy L. Transcriptional repression shapes the identity and function of tissue macrophages. FEBS Open Biol. 2021;11(12):3218–29.

    CAS  Google Scholar 

  60. Fu L, Lee CC. The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer. 2003;3(5):350–61.

    Article  CAS  PubMed  Google Scholar 

  61. Cadenas C, van de Sandt L, Edlund K, Lohr M, Hellwig B, Marchan R, et al. Loss of circadian clock gene expression is associated with tumor progression in breast cancer. Cell Cycle. 2014;13(20):3282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ikushima S, Inukai T, Inaba T, Nimer SD, Cleveland JL, Look AT. Pivotal role for the NFIL3/E4BP4 transcription factor in interleukin 3-mediated survival of pro-B lymphocytes. Proc Natl Acad Sci U S A. 1997;94(6):2609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou Q, Chen J, Feng J, Wang J. E4BP4 promotes thyroid cancer proliferation by modulating iron homeostasis through repression of hepcidin. Cell Death Dis. 2018;9(10):987.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Keniry M, Pires MM, Mense S, Lefebvre C, Gan B, Justiano K, et al. Survival factor NFIL3 restricts FOXO-induced gene expression in cancer. Genes Dev. 2013;27(8):916–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiramongkol Y, Lam EW. FOXO transcription factor family in cancer and metastasis. Cancer Metastasis Rev. 2020;39(3):681–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chaudhry GE, Akim AM, Sung YY, Muhammad TST. Cancer and apoptosis. Methods Mol Biol. 2022;2543:191–210.

    Article  CAS  PubMed  Google Scholar 

  67. Karthik IP, Desai P, Sukumar S, Dimitrijevic A, Rajalingam K, Mahalingam S. E4BP4/NFIL3 modulates the epigenetically repressed RAS effector RASSF8 function through histone methyltransferases. J Biol Chem. 2018;293(15):5624–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Edlich F. BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun. 2018;500(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  69. Lin SC, Lin CH, Shih NC, Liu HL, Wang WC, Lin KY, et al. Cellular prion protein transcriptionally regulated by NFIL3 enhances lung cancer cell lamellipodium formation and migration through JNK signaling. Oncogene. 2020;39(2):385–98.

    Article  CAS  PubMed  Google Scholar 

  70. Hayashi M, Kawakubo H, Fukuda K, Mayanagi S, Nakamura R, Suda K, et al. THUMP domain containing 2 protein possibly induces resistance to cisplatin and 5-fluorouracil in in vitro human esophageal squamous cell carcinoma cells as revealed by transposon activation mutagenesis. J Gene Med. 2019;21(12): e3135.

    Article  CAS  PubMed  Google Scholar 

  71. Hosseini K, Frenzel A, Fischer-Friedrich E. EMT changes actin cortex rheology in a cell-cycle-dependent manner. Biophys J. 2021;120(16):3516–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tang PM, Zhou S, Meng XM, Wang QM, Li CJ, Lian GY, et al. Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. Nat Commun. 2017;8:14677.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Peng Z, Zhang C, Zhou W, Wu C, Zhang Y. The STAT3/NFIL3 signaling axis-mediated chemotherapy resistance is reversed by Raddeanin A via inducing apoptosis in choriocarcinoma cells. J Cell Physiol. 2018;233(7):5370–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gupta N, Park JE, Tse W, Low JK, Kon OL, McCarthy N, et al. ERO1alpha promotes hypoxic tumor progression and is associated with poor prognosis in pancreatic cancer. Oncotarget. 2019;10(57):5970–82.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Progatzky F, Taylor H, Bugeon L, Cassidy S, Radbruch A, Dallman MJ, et al. The role of Nfil3 in zebrafish hematopoiesis. Dev Comp Immunol. 2012;38(1):187–92.

    Article  CAS  PubMed  Google Scholar 

  76. Smith AM, Qualls JE, O’Brien K, Balouzian L, Johnson PF, Schultz-Cherry S, et al. A distal enhancer in Il12b is the target of transcriptional repression by the STAT3 pathway and requires the basic leucine zipper (B-ZIP) protein NFIL3. J Biol Chem. 2011;286(26):23582–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li F, Liu J, Jo M, Curry TE Jr. A role for nuclear factor interleukin-3 (NFIL3), a critical transcriptional repressor, in down-regulation of periovulatory gene expression. Mol Endocrinol. 2011;25(3):445–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dierickx P, Zhu K, Carpenter BJ, Jiang C, Vermunt MW, Xiao Y, et al. Circadian REV-ERBs repress E4bp4 to activate NAMPT-dependent NAD(+) biosynthesis and sustain cardiac function. Nat Cardiovasc Res. 2022;1(1):45–58.

    Article  PubMed  Google Scholar 

  79. Tong X, Muchnik M, Chen Z, Patel M, Wu N, Joshi S, et al. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J Biol Chem. 2010;285(47):36401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yu H, Shen Y, Sun J, Xu X, Wang R, Xuan Y, et al. Molecular cloning and functional characterization of the NFIL3/E4BP4 transcription factor of grass carp. Ctenopharyngodon idella. Dev Comp Immunol. 2014;47(2):215–22.

    Article  CAS  PubMed  Google Scholar 

  81. Baek YS, Haas S, Hackstein H, Bein G, Hernandez-Santana M, Lehrach H, et al. Identification of novel transcriptional regulators involved in macrophage differentiation and activation in U937 cells. BMC Immunol. 2009;10:18.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kashiwada M, Pham NL, Pewe LL, Harty JT, Rothman PB. NFIL3/E4BP4 is a key transcription factor for CD8alpha(+) dendritic cell development. Blood. 2011;117(23):6193–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schlenner S, Pasciuto E, Lagou V, Burton O, Prezzemolo T, Junius S, et al. NFIL3 mutations alter immune homeostasis and sensitise for arthritis pathology. Ann Rheum Dis. 2019;78(3):342–9.

    Article  CAS  PubMed  Google Scholar 

  84. Zhu C, Sakuishi K, Xiao S, Sun Z, Zaghouani S, Gu G, et al. An IL-27/NFIL3 signalling axis drives Tim-3 and IL-10 expression and T-cell dysfunction. Nat Commun. 2015;6:6072.

    Article  CAS  PubMed  Google Scholar 

  85. Mazzio EA, Lewis CA, Elhag R, Soliman KF. Effects of sepantronium bromide (YM-155) on the whole transcriptome of MDA-MB-231 cells: highlight on impaired ATR/ATM fanconi anemia DNA damage response. Cancer Genom Proteom. 2018;15(4):249–64.

    Article  CAS  Google Scholar 

Download references

Funding

The work of Weiwei Yang was funded by the Heilongjiang Province Postdoctoral Scientific Research Developmental Fund (Grant No. LBH-Q20046) and the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2022H008) and the work of Minghui Zhang was supported by the Natural Science Foundation of Inner Mongolia (Grant No. 2020MS08084).

Author information

Authors and Affiliations

Authors

Contributions

YWW and WYQ offered main direction and significant guidance of this manuscript. ZLX, CDX, XY, and ZMH drafted the manuscript and illustrated the figures for the manuscript. All authors approved the final manuscript.

Corresponding authors

Correspondence to Yiqi Wu or Weiwei Yang.

Ethics declarations

Conflict of interest

All of the authors declare that this work does not have any conflict interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

All the participants has written informed consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Chen, D., Xue, Y. et al. A new border for circadian rhythm gene NFIL3 in diverse fields of cancer. Clin Transl Oncol 25, 1940–1948 (2023). https://doi.org/10.1007/s12094-023-03098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03098-5

Keywords

Navigation