Skip to main content

Advertisement

Log in

Why cerebellar glioblastoma is rare and how that indicates adjunctive use of the FDA-approved anti-emetic aprepitant might retard cerebral glioblastoma growth: a new hypothesis to an old question

  • News and Views
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Grahovac G, Tomac D, Lambasa S et al (2009) Cerebellar glioblastomas: pathophysiology, clinical presentation and management. Acta Neurochir (Wien) Mar 25 [Epub ahead of print]

  2. Luccarelli G (1980) Glioblastoma multiforme of the cerebellum: description of three cases. Acta Neurochir (Wien) 53:107–116

    Article  CAS  Google Scholar 

  3. Hur H, Jung S, Jung TY, Kim IY (2008) Cerebellar glioblastoma multiforme in an adult. J Korean Neurosurg Soc 43:194–197

    Article  PubMed  Google Scholar 

  4. Muñoz M, Rosso M (2009) The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug. Invest New Drugs Jan 17 [Epub ahead of print]

  5. Ekinci N, Acer N, Akkaya A et al (2008) Volumetric evaluation of the relations among the cerebrum, cerebellum and brain stem in young subjects: a combination of stereology and magnetic resonance imaging. Surg Radiol Anat 30:489–494

    Article  PubMed  Google Scholar 

  6. Del Fiacco M, Perra MT, Quartu M et al (1988) Evidence for the presence of substance P-like immunoreactivity in the human cerebellum. Brain Res 446:173–177

    Article  PubMed  Google Scholar 

  7. Hayashi M (1987) Ontogeny of glutamic acid decarboxylase, tyrosine hydroxylase, choline acetyltransferase, somatostatin and substance P in monkey cerebellum. Brain Res 429:181–186

    PubMed  CAS  Google Scholar 

  8. Kwong WH, Chan WY, Lee KK et al (2000) Neurotransmitters, neuropeptides and calcium binding proteins in developing human cerebellum: a review. Histochem J 32:521–534

    Article  PubMed  CAS  Google Scholar 

  9. Yamashita A, Shimizu K, Hayashi M (1990) Ontogeny of substance P immunoreactive structures in the primate cerebral neocortex. Brain Res Dev Brain Res 57:197–207

    Article  PubMed  CAS  Google Scholar 

  10. Herpfer I, Lieb K (2005) Substance P receptor antagonists in psychiatry: rationale for development and therapeutic potential. CNS Drugs 19:275–293

    Article  PubMed  CAS  Google Scholar 

  11. Navari RM (2004) Aprepitant: a neurokinin-1 receptor antagonist for the treatment of chemotherapy-induced nausea and vomiting. Expert Rev Anticancer Ther 4:715–724

    Article  PubMed  CAS  Google Scholar 

  12. Navari RM (2004) Role of neurokinin-1 receptor antagonists in chemotherapy induced emesis: summary of clinical trials. Cancer Invest 22:569–576

    Article  PubMed  CAS  Google Scholar 

  13. Yamaguchi K, Richardson MD, Bigner DD, Kwatra MM (2005) Signal transduction through substance P receptor in human glioblastoma cells: roles for Src and PKCdelta. Cancer Chemother Pharmacol 56:585–593

    Article  PubMed  CAS  Google Scholar 

  14. Yamaguchi K, Kugimiya T, Miyazaki T (2005) Substance P receptor in U373 MG human astrocytoma cells activates mitogen-activated protein kinases ERK1/2 through Src. Brain Tumor Pathol 22:1–8

    Article  PubMed  CAS  Google Scholar 

  15. Caberlotto L, Hurd YL, Murdock P et al (2003) Neurokinin 1 receptor and relative abundance of the short and long isoforms in the human brain. Eur J Neurosci 17:1736–1746

    Article  PubMed  Google Scholar 

  16. Nyman MJ, Eskola O, Kajander J et al (2007) Gender and age affect NK1 receptors in the human brain — a positron emission tomography study with [18F]SPARQ. Int J Neuropsychopharmacol 10:219–229

    Article  PubMed  CAS  Google Scholar 

  17. Lazarczyk M, Matyja E, Lipkowski A (2007) Substance P and its receptors — a potential target for novel medicines in malignant brain tumour therapies (mini-review). Folia Neuropathol 45:99–107

    PubMed  CAS  Google Scholar 

  18. Palma C, Maggi CA (2000) The role of tachykinins via NK1 receptors in progression of human gliomas. Life Sci 67:985–1001

    Article  PubMed  CAS  Google Scholar 

  19. Lopez-Gines C, Gil-Benso R, Benito R et al (2008) The activation of ERK1/2 MAP kinases in glioblastoma pathobiology and its relationship with EGFR amplification. Neuropathology 28:507–515

    Article  PubMed  Google Scholar 

  20. Park SW, Yan YP, Satriotomo I et al (2007) Substance P is a promoter of adult neural progenitor cell proliferation under normal and ischemic conditions. J Neurosurg 107:593–599

    Article  PubMed  CAS  Google Scholar 

  21. Wiltrout C, Lang B, Yan Y et al (2007) Repairing brain after stroke: a review on post-ischemic neurogenesis. Neurochem Int 50:1028–1041

    Article  PubMed  CAS  Google Scholar 

  22. Kneifel S, Bernhardt P, Uusijärvi H et al (2007) Individual voxelwise dosimetry of targeted 90Y-labelled substance P radiotherapy for malignant gliomas. Eur J Nucl Med Mol Imaging 34:1388–1395

    Article  PubMed  CAS  Google Scholar 

  23. Kneifel S, Cordier D, Good S et al (2006) Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10triacetic acid-substance P. Clin Cancer Res 12:3843–3850

    Article  PubMed  CAS  Google Scholar 

  24. Pollard H, Bouthenet ML, Moreau J et al (1989) Detailed immunoautoradiographic mapping of enkephalinase (EC 3.4.24.11) in rat central nervous system: comparison with enkephalins and substance P. Neuroscience 30:339–376

    Article  PubMed  CAS  Google Scholar 

  25. Tang F, Man WS (1991) The regional distribution of thyrotropin releasing hormone, leu-enkephalin, met-enkephalin, substance P, somatostatin and cholecystokinin in the rat brain and pituitary. Neuropeptides 19:287–292

    Article  PubMed  CAS  Google Scholar 

  26. Ray AP, Darmani NA (2007) A histologically derived stereotaxic atlas and substance P immunohistochemistry in the brain of the least shrew (Cryptotis parva) support its role as a model organism for behavioral and pharmacological research. Brain Res 1156:99–111

    Article  PubMed  CAS  Google Scholar 

  27. Zohrabian VM, Forzani B, Chau Z et al (2009) Rho/ROCK and MAPK signaling pathways are involved in glioblastoma cell migration and proliferation. Anticancer Res 29:119–123

    PubMed  CAS  Google Scholar 

  28. Al-Sarraj A, Thiel G (2002) Substance P induced biosynthesis of the zinc finger transcription factor Egr-1 in human glioma cells requires activation of the epidermal growth factor receptor and of extracellular signal-regulated protein kinase. Neurosci Lett 332:111–114

    Article  PubMed  CAS  Google Scholar 

  29. Xu L, Fukumura D, Jain RK (2002) Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF. J Biol Chem 277:11368–11374

    Article  PubMed  CAS  Google Scholar 

  30. Lin HY, Sun M, Tang, HY et al (2009) L-thyroxine vs. 3,5,3′-triiodo-L-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell Physiol 296:C980–991

    Article  PubMed  CAS  Google Scholar 

  31. Zagzag D, Esencay M, Mendez O et al (2008) Hypoxia- and vascular endothelial growth factorinduced stromal cell-derived factor-1alpha/CXCR4 expression in glioblastomas: one plausible explanation of Scherer’s structures. Am J Pathol 173:545–560

    Article  PubMed  CAS  Google Scholar 

  32. Barbero S, Bonavia R, Bajetto A et al (2003) Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 63:1969–1974

    PubMed  CAS  Google Scholar 

  33. Maru SV, Holloway KA, Flynn G et al (2008) Chemokine production and chemokine receptor expression by human glioma cells: role of CXCL10 in tumour cell proliferation. J Neuroimmunol 199:35–45

    Article  PubMed  CAS  Google Scholar 

  34. Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26:2839–2845

    Article  PubMed  CAS  Google Scholar 

  35. Pérez Castillo A, Aguilar-Morante D, Morales-García JA, Dorado J (2008) Cancer stem cells and brain tumors. Clin Transl Oncol 10:262–267

    Article  PubMed  Google Scholar 

  36. Lefranc F (2009) Editorial: on the road to multi-modal and pluri-disciplinary treatment of glioblastomas. Acta Neurochir (Wien) 151:109–112

    Article  Google Scholar 

  37. Belda-Iniesta C, de Castro Carpeño J, Sereno M et al (2008) Epidermal growth factor receptor and glioblastoma multiforme: molecular basis for a new approach. Clin Transl Oncol 10:73–77

    Article  PubMed  CAS  Google Scholar 

  38. Belda-Iniesta C, de Castro Carpeño J, Casado Sáenz E et al (2006) Molecular biology of malignant gliomas. Clin Transl Oncol 8:635–641

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Kast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kast, R.E. Why cerebellar glioblastoma is rare and how that indicates adjunctive use of the FDA-approved anti-emetic aprepitant might retard cerebral glioblastoma growth: a new hypothesis to an old question. Clin Transl Oncol 11, 408–410 (2009). https://doi.org/10.1007/s12094-009-0379-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-009-0379-x

Navigation