Skip to main content

Advertisement

Log in

Individual voxelwise dosimetry of targeted 90Y-labelled substance P radiotherapy for malignant gliomas

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Substance P is the main ligand of neurokinin type 1 (NK-1) receptors, which are consistently overexpressed in malignant gliomas. The peptidic vector 111In/90Y-DOTAGA-substance P binds to these receptors and can be used for local treatment of brain tumours. Dosimetry for this interstitial brachytherapy has mainly been done using geometrical models; however, they often do not faithfully reproduce the in vivo biodistribution of radiopharmaceuticals, which is indispensable to correlate the deposited energy with clinical response. The aim of this study was to establish a reproducible dosimetry protocol for intratumoural radiopeptide therapy.

Methods

For test and therapeutic injections, 2 MBq of 111In-substance P and 370–3,330 MBq of 90Y-substance P, respectively, were applied in 12 patients with malignant gliomas. Over a period of 24 h, serial SPECT scans were performed on a dual-head SPECT camera. The scans were acquired in a double-energy window technique together with 99mTc-ECD in order to co-register the dose distributions with a separately acquired, contrast-enhanced CT scan. Quantitative voxelwise dose distribution maps (in Gy/GBq) were computed from these data using a mono-exponential decay approach. Pre- and post-therapeutic values were compared.

Results

Agreement between pre- and post-therapeutic dosimetry was very good and delivered absolute dose values in Gy per injected GBq. In all patients, the pretherapeutic test injection together with the CT overlay technique could predict the precise localisation of dose deposition in an anatomical context.

Conclusion

This protocol allows a precise pretherapeutic computation of the expected three-dimensional dose distribution and is clearly superior to the previously used dosimetry based on planar scintigraphic images. It has become an indispensable tool for planning intratumoural radiopeptide therapy in glioma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merlo A, Hausmann O, Wasner M, Steiner P, Otte A, Jermann E, et al. Locoregional regulatory peptide receptor targeting with the diffusible somatostatin analogue 90Y-labeled DOTA0-D-Phe1-Tyr3-octreotide (DOTATOC): a pilot study in human gliomas. Clin Cancer Res 1999;5:1025–33.

    PubMed  CAS  Google Scholar 

  2. Schumacher T, Hofer S, Eichhorn K, Wasner M, Zimmerer S, Freitag P, et al. Local injection of the 90Y-labelled peptidic vector DOTATOC to control gliomas of WHO grades II and III: an extended pilot study. Eur J Nucl Med Mol Imaging 2002;29:486–93.

    Article  PubMed  CAS  Google Scholar 

  3. Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 2003;24:389–427.

    Article  PubMed  CAS  Google Scholar 

  4. Hennig IM, Laissue JA, Horisberger U, Reubi JC. Substance-P receptors in human primary neoplasms: tumoral and vascular localization. Int J Cancer 1995;61:786–92.

    Article  PubMed  CAS  Google Scholar 

  5. Eisenwiener KP, Powell P, Mäcke HR. A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling. Bioorg Med Chem Lett 2000;10:2133–5.

    Article  PubMed  CAS  Google Scholar 

  6. Mäcke HR, Good S. Radiometals (non-Tc, non-Re) and bifunctional labeling chemistry. In: Vértes A, Nagy S, Klencsár Z, editors. Handbook of nuclear chemistry. Amsterdam: Kluwer Academic; 2004. pp. 279–314.

  7. Kneifel S, Cordier D, Good S, Ionescu MC, Ghaffari A, Hofer S, et al. Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid-substance P. Clin Cancer Res 2006;12:3843–50.

    Article  PubMed  CAS  Google Scholar 

  8. Akabani G, Reist CJ, Cokgor I, Friedman AH, Friedman HS, Coleman RE, et al. Dosimetry of 131I-labeled 81C6 monoclonal antibody administered into surgically created resection cavities in patients with malignant brain tumors. J Nucl Med 1999;40:631–8.

    PubMed  CAS  Google Scholar 

  9. Akabani G, Cokgor I, Coleman RE, González Trotter D, Wong TZ, Friedman HS, et al. Dosimetry and dose-response relationships in newly diagnosed patients with malignant gliomas treated with 131I-labeled anti-tenascin monoclonal antibody 81C6 therapy. Int J Radiat Oncol Biol Phys 2000;46:947–58.

    Article  PubMed  CAS  Google Scholar 

  10. Ferrari M, Cremonesi M, Bartolomei M, Bodei L, Chinol M, Fiorenza M, et al. Dosimetric model for locoregional treatments of brain tumors with 90Y-conjugates: clinical application with 90Y-DOTATOC. J Nucl Med 2006;47:105–12.

    PubMed  CAS  Google Scholar 

  11. Stewart RD, Wilson WE, McDonald JC, Strom DJ. Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system. Phys Med Biol 2002;47:79–88.

    Article  PubMed  CAS  Google Scholar 

  12. Ye SJ, Brezovich IA, Pareek P, Naqvi SA. Benchmark of PENELOPE code for low-energy photon transport: dose comparisons with MCNP4 and EGS4. Phys Med Biol 2004;49:387–97.

    Article  PubMed  Google Scholar 

  13. Atherton E, Sheppard RC. Fluorenylmethoxycarbonylpolyamide solid phase peptide synthesis: general principles and development. In: Solid phase peptide synthesis: a practical approach. Eynsham, Oxford: IRL Press; 1989. pp. 25–37.

    Google Scholar 

  14. Heppeler A, Froidevaux S, Mäcke HR, Jermann E, Béhé M, Powell P, et al. Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy. Chem Eur J 1999;5:1974–81.

    Article  CAS  Google Scholar 

  15. Vallabhajosula S, Zimmerman RE, Picard M, Stritzke P, Mena I, Hellman RS, et al. 99mTc ECD: a new brain imaging agent: in vivo kinetics and biodistribution studies in normal human subjects. J Nucl Med 1989;30:599–604.

    PubMed  CAS  Google Scholar 

  16. Léveillé J, Demonceau G, De Roo M, Rigo P, Taillefer R, Morgan RA, et al. Characterization of 99mTc-L,L-ECD for brain perfusion imaging, part 2: biodistribution and brain imaging in humans. J Nucl Med 1989;30:1902–10.

    PubMed  Google Scholar 

  17. Holman BL, Hellman RS, Goldsmith SJ, Mena IG, Leveille J, Gherardi PG, et al. Biodistribution, dosimetry, and clinical evaluation of 99mTc ethyl cysteinate dimer in normal subjects and in patients with chronic cerebral infarction. J Nucl Med 1989;30:1018–24.

    PubMed  CAS  Google Scholar 

  18. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;1:113–22.

    Article  PubMed  CAS  Google Scholar 

  19. Barnden LR, Hatton RL, Behin-Ain S, Hutton BF, Goble EA. Optimisation of brain SPET and portability of normal databases. Eur J Nucl Med Mol Imaging 2004;31:378–87.

    Article  PubMed  Google Scholar 

  20. Kim KM, Varrone A, Watabe H, Shidahara M, Fujita M, Innis RB, et al. Contribution of scatter and attenuation compensation to SPECT images of nonuniformly distributed brain activities. J Nucl Med 2003;44:512–9.

    PubMed  Google Scholar 

  21. Larsson A, Johansson L, Sundström T, Ahlström KR. A method for attenuation and scatter correction of brain SPECT based on computed tomography images. Nucl Med Commun 2003;24:411–20.

    Article  PubMed  CAS  Google Scholar 

  22. Shidahara M, Watabe H, Kim KM, Kato T, Kawatsu S, Kato R, et al. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method. Eur J Nucl Med Mol Imaging 2005;32:1193–8.

    Article  PubMed  Google Scholar 

  23. Vines DC, Ichise M, Liow JS, Toyama H, Innis RB. Evaluation of 2 scatter correction methods using a striatal phantom for quantitative brain SPECT. J Nucl Med Technol 2003;31:157–60.

    PubMed  Google Scholar 

  24. Pietrzyk U, Herholz K, Heiss WD. Three-dimensional alignment of functional and morphological tomograms. J Comput Assist Tomogr 1990;14:51–9.

    Article  PubMed  CAS  Google Scholar 

  25. Pietrzyk U, Herholz K, Schuster A, von Stockhausen HM, Lucht H, Heiss WD. Clinical applications of registration and fusion of multimodality brain images from PET, SPECT, CT, and MRI. Eur J Radiol 1996;21:174–82.

    Article  PubMed  CAS  Google Scholar 

  26. Herholz K, Hölzer T, Bauer B, Schröder R, Voges J, Ernestus RI, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 1998;50:1316–22.

    PubMed  CAS  Google Scholar 

  27. Ling CC. Permanent implants using 198Au, 103Pd and 125I: radiobiological considerations based on the linear quadratic model. Int J Radiat Oncol Biol Phys 1992;23:81–7.

    PubMed  CAS  Google Scholar 

  28. Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS. Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM (American Association of Physicists in Medicine) Radiation Therapy Committee Task Group No. 43. Med Phys 1995;22:209–34.

    Article  PubMed  CAS  Google Scholar 

  29. Prete JJ, Prestidge BR, Bice WS, Friedland JL, Stock RG, Grimm PD. A survey of physics and dosimetry practice of permanent prostate brachytherapy in the United States. Int J Radiat Oncol Biol Phys 1998;40:1001–5.

    Article  PubMed  CAS  Google Scholar 

  30. Nag S, Beyer D, Friedland J, Grimm P, Nath R. American Brachytherapy Society (ABS) recommendations for transperineal permanent brachytherapy of prostate cancer. Int J Radiat Oncol Biol Phys 1999;44:789–99.

    Article  PubMed  CAS  Google Scholar 

  31. Chan JL, Lee SW, Fraass BA, Normolle DP, Greenberg HS, Junck LR, et al. Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 2002;20:1635–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kneifel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kneifel, S., Bernhardt, P., Uusijärvi, H. et al. Individual voxelwise dosimetry of targeted 90Y-labelled substance P radiotherapy for malignant gliomas. Eur J Nucl Med Mol Imaging 34, 1388–1395 (2007). https://doi.org/10.1007/s00259-006-0351-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0351-8

Keywords

Navigation