Skip to main content
Log in

Challenges and Opportunities for Customizing Polyhydroxyalkanoates

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) as an alternative to synthetic plastics have been gaining increasing attention. Being natural in their origin, PHAs are completely biodegradable and eco-friendly. However, consistent efforts to exploit this biopolymer over the last few decades have not been able to pull PHAs out of their nascent stage, inspite of being the favorite of the commercial world. The major limitations are: (1) the high production cost, which is due to the high cost of the feed and (2) poor thermal and mechanical properties of polyhydroxybutyrate (PHB), the most commonly produced PHAs. PHAs have the physicochemical properties which are quite comparable to petroleum based plastics, but PHB being homopolymers are quite brittle, less elastic and have thermal properties which are not suitable for processing them into sturdy products. These properties, including melting point (Tm), glass transition temperature (Tg), elastic modulus, tensile strength, elongation etc. can be improved by varying the monomeric composition and molecular weight. These enhanced characteristics can be achieved by modifications in the types of substrates, feeding strategies, culture conditions and/or genetic manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PHB:

Polyhydroxybutyrate

PHA:

Polyhydroxyalkanoate

HA:

Hydroxyacids

3HB:

3-Hydroxybutyrate

3HV:

3-Hydroxyvalerate

4HB:

4-Hydroxybutyrate

3H5PV:

3-Hydroxy-5-phenylvaleric acid

3HHp:

3-Hydroxyheptanoate

3HP:

3-Hydroxypentanoate

3H2MB:

3-Hydroxy-2-methylbutyrate

3H2MV:

3-Hydroxy-2-methylvalerate

3HHx:

3-Hydroxyhexanoate

3HHx=:

3-Hydroxyhex-5-enoate

6HHx:

6-Hydroxyhexanoate

3HHpe:

3-Hydroxyheptenoate

3HO:

3-Hydroxyoctanoate

3HN:

3-Hydroxynonanoate

3HNe:

3-Hydroxynonenoate

3HD:

3-Hydroxydecanoate

3HDD:

3-Hydroxydodecanoate

3HDDE:

3-Hydroxydodecenoate

3HHD:

3-Hydroxyhexadecanoate

3HHDE:

3-Hydroxyhexadecenoate

3HTD:

3-Hydroxytetradecanoate

3HTDE:

3-Hydroxytetradecenoate

3HOD:

3-Hydroxyoctadecanoate

3HUD:

3-Hydroxyundecanoate

3HUDE:

3-Hydroxyundecenoate

mcl:

Medium chain length

Mn :

Number average molecular weight

Mw :

Weight average molecular weight

PDI:

Polydispersity index

scl:

Short chain length

Tg :

Glass transition temperature

Tm :

Melting temperature

References

  1. Kalia VC, Raizada N, Sonakya V (2000) Bioplastics. J Sci Ind Res 59:433–445

    CAS  Google Scholar 

  2. Reddy CSK, Ghai R, Rashmi Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146. doi:10.1016/S0960-8524(02)00212-2

    Article  CAS  PubMed  Google Scholar 

  3. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. doi:10.1186/1475-2859-8-38

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi:10.1016/j.biotechadv.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65. doi:10.1016/j.copbio.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  6. Dai Y, Lambert L, Yuan Z, Keller J (2008) Characterisation of polyhydroxyalkanoate copolymers with controllable four-monomer composition. J Biotechnol 134:137–145. doi:10.1016/j.jbiotec.2008.01.013

    Article  CAS  PubMed  Google Scholar 

  7. Bengtsson S, Pisco AR, Johansson P, Lemos PC, Reis MAM (2010) Molecular weight and thermal properties of polyhydroxyalkanoates produced from fermented sugar molasses by open mixed cultures. J Biotechnol 147:172–179. doi:10.1016/j.jbiotec.2010.03.022

    Article  CAS  PubMed  Google Scholar 

  8. Albuquerque MGE, Martino V, Pollet E, Avérous L, Reis MAM (2011) Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. J Biotechnol 151:66–76. doi:10.1016/j.jbiotec.2010.10.070

    Article  CAS  PubMed  Google Scholar 

  9. Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33. doi:10.1042/BJ20031254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Naik S, Gopal SKV, Somal P (2008) Bioproduction of polyhydroxyalkanoates from bacteria: a metabolic approach. World J Microbiol Biotechnol 24:2307–2314. doi:10.1007/s11274-008-9745-z

    Article  CAS  Google Scholar 

  11. Tan G-YA, Chen C-L, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang J-Y (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6:706–754. doi:10.3390/polym6030706

    Article  Google Scholar 

  12. Kalia VC, Chauhan A, Bhattacharyya G (2003) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846. doi:10.1038/nbt0803-845

    Article  CAS  PubMed  Google Scholar 

  13. Kalia VC, Lal S, Cheema S (2007) Insight into the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26. doi:10.1016/j.gene.2006.09.010

    Article  CAS  PubMed  Google Scholar 

  14. Lal S, Cheema S, Kalia VC (2008) Phylogeny vs genome reshuffling: horizontal gene transfer. Ind J Microbiol 48:228–242. doi:10.1007/s12088-008-0034-1

    Article  CAS  Google Scholar 

  15. Magdouli S, Brar SK, Blais JF, Tyagi RD (2015) How to direct the fatty acid biosynthesis towards polyhydroxyalkanoates production? Biomass Bioenergy 74:268–279. doi:10.1016/j.biombioe.2014.12.017

    Article  CAS  Google Scholar 

  16. Zhao W, Chen GQ (2007) Production and characterization of terpolyester poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaAB. Process Biochem 42:1342–1347. doi:10.1016/j.procbio.2007.07.006

    Article  CAS  Google Scholar 

  17. Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi:10.1007/s12088-014-0457-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Iwata T (2005) Strong fibers and films of microbial polyesters. Macromol Biosci 5:689–701. doi:10.1002/mabi.200500066

    Article  CAS  PubMed  Google Scholar 

  19. Agus J, Kahar P, Abe H, Doi Y, Tsuge T (2006) Molecular weight characterization of poly(R)-3-hydroxybutyrate synthesized by genetically engineered strains of Escherichia coli. Polym Degrad Stab 91:1138–1146. doi:10.1016/j.polymdegradstab.2005.07.006

    Article  CAS  Google Scholar 

  20. Lim HN, Lee Y, Hussein R (2011) Fundamental relationship between operon organization and gene expression. Proc Natl Acad Sci USA 108:10626–10631. doi:10.1073/pnas.1105692108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Khanna S, Srivastava AK (2008) Continuous production of poly-β-hydroxybutyrate by high-cell-density cultivation of Wautersia eutropha. J Chem Technol Biotechnol 83:799–805. doi:10.1002/jctb.1868

    Article  CAS  Google Scholar 

  22. Park DH, Kim BS (2011) Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from soybean oil. New Biotechnol 28:719–724. doi:10.1016/j.nbt.2011.01.007

    Article  CAS  Google Scholar 

  23. Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Piotrowska-Seget Z, Radecka IK (2011) Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express 1:11. doi:10.1186/2191-0855-1-11

    Article  PubMed Central  PubMed  Google Scholar 

  24. Chen JY, Liu T, Zheng Z, Chen JC, Chen GQ (2004) Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 had different substrate specificities. FEMS Microbiol Lett 234:231–237. doi:10.1111/j.1574-6968.2004.tb09538.x

    Article  CAS  PubMed  Google Scholar 

  25. Hartmann R, Hany R, Pletscher E, Ritter A, Witholt B, Zinn M (2006) Tailor-made olefinic medium-chain-length poly[(R)-3-hydroxyalkanoates] by Pseudomonas putida GPo1: batch versus chemostat production. Biotechnol Bioeng 93:737–746. doi:10.1002/bit.20756

    Article  CAS  PubMed  Google Scholar 

  26. Solaiman DKY, Ashby RD Jr, Hotchkiss AT, Foglia TA (2006) Biosynthesis of medium-chain-length poly(hydroxyalkanoates) from soy molasses. Biotechnol Lett 28:157–162. doi:10.1007/s10529-005-5329-2

    Article  CAS  PubMed  Google Scholar 

  27. Liu Q, Luo G, Zhou XR, Chen GQ (2011) Biosynthesis of poly (3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metabol Eng 13:11–17. doi:10.1016/j.ymben.2010.10.004

    Article  CAS  Google Scholar 

  28. Yang YH, Brigham CJ, Song E, Jeon JM, Rha CK, Sinskey AJ (2012) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing a predominant amount of 3-hydroxyvalerate by engineered Escherichia coli expressing propionate-CoA transferase. J Appl Microbiol 113:815–823. doi:10.1111/j.1365-2672.2012.05391.x

    Article  CAS  PubMed  Google Scholar 

  29. Singh AK, Mallick N (2009) Exploitation of inexpensive substrates for production of a novel SCL-LCL-PHA co-polymer by Pseudomonas aeruginosa MTCC 7925. J Ind Microbiol Biotechnol 36:347–354. doi:10.1007/s10295-008-0503-x

    Article  CAS  PubMed  Google Scholar 

  30. Tajima K, Igari T, Nishimura D, Nakamura M, Satoh Y, Munekata M (2003) Isolation and characterization of Bacillus sp. INT005 accumulating polyhydroxyalkanoate (PHA) from gas field soil. J Biosci Bioeng 95:77–81. doi:10.1016/S1389-1723(03)80152-4

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Ruan L, Lo WH, Chua H, Yu HF (2006) Construction of recombinant Bacillus subtilis for production of polyhydroxyalkanoates. Appl Biochem Biotechnol 132:1015–1022. doi:10.1007/978-1-59745-268-7_85

    Article  Google Scholar 

  32. Valappil SP, Rai R, Bucke C, Roy I (2008) Polyhydroxyalkanoate biosynthesis in Bacillus cereus SPV under varied limiting conditions and an insight into the biosynthetic genes involved. J Appl Microbiol 104:1624–1635. doi:10.1111/j.1365-2672.2007.03678.x

    Article  CAS  PubMed  Google Scholar 

  33. Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi:10.1007/s12088-012-0294-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nikel PI, Pettinari MJ, Galvagno MA, Méndez BS (2008) Poly (3-hydroxybutyrate) synthesis from glycerol by a recombinant Escherichia coli arcA mutant in fed-batch microaerobic cultures. Appl Microbiol Biotechnol 77:1337–1343. doi:10.1007/s00253-007-1255-7

    Article  PubMed  Google Scholar 

  35. Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol. doi:10.1016/j.ijbiomac.2015.03.046

    Google Scholar 

  36. Don TM, Chen CW, Chan TH (2006) Preparation and characterization of poly(hydroxyalkanoate) from the fermentation of Haloferax mediterranei. J Biomater Sci Polym 17:1425–1438. doi:10.1163/156856206778937208

    Article  CAS  Google Scholar 

  37. Huang TY, Duan KJ, Huang SY, Chen CW (2006) Production of polyhydroxybutyrates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33:701–706. doi:10.1016/j.procbio.2006.05.026

    Article  CAS  PubMed  Google Scholar 

  38. Koller M, Hesse P, Bona R, Kutschera C, Atlic A, Braunegg G (2007) Biosynthesis of high quality polyhydroxyalkanoate co terpolyesters for potential medical application by the archaeon Haloferax mediterranei. Macromol Symp 253:33–39. doi:10.1002/masy.200750704

    Article  CAS  Google Scholar 

  39. Hofer P, Vermette P, Groleau D (2011) Production and characterization of polyhydroxyalkanoates by recombinant Methylobacterium extorquens: combining desirable thermal properties with functionality. Biochem Eng J 54:26–33. doi:10.1016/j.bej.2011.01.003

    Article  Google Scholar 

  40. Kleerebezem R, van Loosdrecht MCM (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–212. doi:10.1016/j.copbio.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  41. Dionisi D, Majone M, Levantesi C, Bellani A, Fuoco A (2006) Effect of feed length on settleability, substrate uptake and storage in a sequencing batch reactor treating an industrial wastewater. Environ Technol 27:901–908. doi:10.1080/09593332708618700

    Article  CAS  PubMed  Google Scholar 

  42. Patel SKS, Singh M, Kalia VC (2011) Hydrogen and polyhydroxybutyrate producing abilities of Bacillus spp. from glucose in two stage system. Indian J Microbiol 51:418–423. doi:10.1007/s12088-011-0236-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. doi:10.1016/j.biombioe.2011.10.027

    Article  CAS  Google Scholar 

  44. Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi:10.1016/j.biortech.2014.11.029

    Article  CAS  PubMed  Google Scholar 

  45. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi:10.1007/s12088-014-0509-1

    Article  CAS  Google Scholar 

  46. Hiroe A, Tsuge K, Nomura CT, Itaya M, Tsuge T (2012) Rearrangement of gene order in the phaCAB operon leads to effective production of ultrahigh-molecular-weight poly [(R)-3-hydroxybutyrate] in genetically engineered Escherichia coli. Appl Environ Microbiol 78:3177–3184. doi:10.1128/AEM.07715-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100:5996–6009. doi:10.1016/j.biortech.2009.03.088

    Article  CAS  PubMed  Google Scholar 

  48. Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017–2023. doi:10.1111/j.1365-2672.2009.04160.x

    Article  CAS  PubMed  Google Scholar 

  49. Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85:732–743. doi:10.1002/jctb.2392

    Article  CAS  Google Scholar 

  50. Singh AK, Mallick N (2008) Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett Appl Microbiol 46:350–357. doi:10.1111/j.1472-765X.2008.02323.x

    Article  CAS  PubMed  Google Scholar 

  51. Valappil SP, Peiris D, Langley GJ, Herniman JM, Boccaccini AR, Bucke C, Roy I (2007) Polyhydroxyalkanoate (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterized Bacillus sp. J Biotechnol 127:475–487. doi:10.1016/j.jbiotec.2006.07.015

    Article  CAS  PubMed  Google Scholar 

  52. Chanprateep S, Kulpreecha S (2006) Production and characterization of biodegradable terpolymer poly(3-hydroxybutyrate-co-3-hydrobyvalerate-co-4-hydroxybutyrate) by Alcaligenes sp. A-04. J Biosci Bioeng 101:51–56. doi:10.1263/jbb.101.51

    Article  CAS  PubMed  Google Scholar 

  53. Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutschera C, Hesse P, Braunegg G (2008) Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora. Bioresour Technol 99:4854–4863. doi:10.1016/j.biortech.2007.09.049

    Article  CAS  PubMed  Google Scholar 

  54. Simon-Colin C, Raguenes G, Crassous P, Moppert X, Guezennec J (2008) A novel mcl-PHA produced on coprah oil by Pseudomonas guezennei biovar. tikehau, isolated from a ‘kopara’ mat of French Polynesia. Int J Biol Macromol 43:176–181. doi:10.1016/j.ijbiomac.2008.04.011

    Article  CAS  PubMed  Google Scholar 

  55. Davis R, Kataria R, Cerrone F, Woods T, Kenny S, O’Donovan A, Guzik M, Shaikh H, Duane G, Gupta VK, Tuohy MG, Padamatti RB, Casey E, O’Connor KE (2013) Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresour Technol 150:202–209. doi:10.1016/j.biortech.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  56. Tsuge T, Yamamoto T, Yano K, Abe H, Taguchi S (2009) Evaluating the ability of polyhydroxyalkanoate synthase mutants to produce P(3HB-co-3HA) from soybean oil. Macromol Biosci 9:71–78. doi:10.1002/mabi.200800118

    Article  CAS  PubMed  Google Scholar 

  57. Mumtaz T, Yahaya NA, Abd-Aziz S, Rahman NA, Yee PL, Shirai Y, Hassan MA (2010) Turning waste to wealth-biodegradable plastics polyhydroxyalkanoates from palm oil mill effluent—a Malaysian perspective. J Clean Prod 18:1393–1402. doi:10.1016/j.jclepro.2010.05.016

    Article  CAS  Google Scholar 

  58. Bhubalan K, Lee W-H, Loo C-Y, Yamamoto T, Tsuge T, Doi Y, Sudesh K (2008) Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Polym Degrad Stab 93:17–23. doi:10.1016/j.polymdegradstab.2007.11.004

    Article  CAS  Google Scholar 

  59. Bhubalan K, Rathi DN, Abe H, Iwata T, Sudesh K (2010) Improved synthesis of P(3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polym Degrad Stab 95:1436–1442. doi:10.1016/j.polymdegradstab.2009.12.018

    Article  CAS  Google Scholar 

  60. Filipe CDM, Daigger GT, Grady CPL Jr (2001) A metabolic model for acetate uptake under anaerobic conditions by glycogen accumulating organisms: stoichiometry, kinetics, and the effect of pH. Biotechnol Bioeng 76:17–31. doi:10.1002/bit.1022

    Article  CAS  PubMed  Google Scholar 

  61. Jiang Y, Chen Y, Zheng X (2009) Efficient polyhydroxyalkanoates production from a waste-activated sludge alkaline fermentation liquid by activated sludge submitted to the aerobic feeding and discharge process. Environ Sci Technol 43:7734–7741. doi:10.1021/es9014458

    Article  CAS  PubMed  Google Scholar 

  62. Dionisi D, Majone M, Papa V, Beccari M (2004) Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol Bioeng 85:569–579. doi:10.1002/bit.10910

    Article  CAS  PubMed  Google Scholar 

  63. Ivanova G, Serafim LS, Lemos PC, Ramos AM, Reis MAM, Cabrita EJ (2009) Influence of feeding strategies of mixed microbial cultures on the chemical composition and microstructure of copolyesters P(3HB-co-3HV) analyzed by NMR and statistical analysis. Magn Reson Chem 47:497–504. doi:10.1002/mrc.2423

    Article  CAS  PubMed  Google Scholar 

  64. Aziz NA, Sipaut CS, Abdullah AAA (2012) Improvement of the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolyester by manipulating the culture condition. J Chem Technol Biotechnol 87:1607–1614. doi:10.1002/jctb.3817

    Article  Google Scholar 

  65. Zhang HF, Ma L, Wang ZH, Chen GQ (2009) Biosynthesis and characterization of 3-hydroxyalkanoate terpolyesters with adjustable properties by Aeromonas hydrophila. Biotechnol Bioeng 104:582–589. doi:10.1002/bit.22409

    Article  CAS  PubMed  Google Scholar 

  66. Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM (2008) Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 81:615–628. doi:10.1007/s00253-008-1757-y

    Article  CAS  PubMed  Google Scholar 

  67. Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MAM (2007) Strategies for the development of a side stream process for polyhydroxyalkanoates (PHA) production from sugarcane molasses. J Biotechnol 130:411–421. doi:10.1016/j.jbiotec.2007.05.011

    Article  CAS  PubMed  Google Scholar 

  68. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247. doi:10.1002/jctb.1667

    Article  CAS  Google Scholar 

  69. Myshkina VL, Nikolaeva DA, Makhina TK, Bonartsev AP, Bonartseva GA (2008) Effect of growth conditions on the molecular weight of poly-3-hydroxybutyrate produced by Azotobacter chroococcum 7B. Appl Biochem Microbiol 44:482–486. doi:10.1134/S0003683808050050

    Article  CAS  Google Scholar 

  70. Myshkina VL, Ivanov EA, Nikolaeva DA, Makhina TK, Bonartsev AP, Filatova EV, Ruzhitsky AO, Bonartseva GA (2010) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Azotobacter chroococcum strain 7B. Appl Biochem Microbiol 46:289–296. doi:10.1134/S0003683810030075

    Article  CAS  Google Scholar 

  71. Villano M, Beccari M, Dionisi D, Lampis S, Miccheli A, Vallini G, Majone M (2010) Effect of pH on the production of bacterial polyhydroxyalkanoates by mixed cultures enriched under periodic feeding. Proc Biochem 45:714–723. doi:10.1016/j.procbio.2010.01.008

    Article  CAS  Google Scholar 

  72. Ch’ng DHE, Lee WH, Sudesh K (2012) Biosynthesis and lipase-catalysed hydrolysis of 4-hydroxybutyrate-containing polyhydroxyalkanoates from Delftia acidovorans. Mal J Microbiol 9:33–42

    Google Scholar 

  73. Chanprateep S, Katakura Y, Shimizu H, Visetkoop S, Kulpreecha S, Shioya S (2008) Characterization of new isolated Ralstonia eutropha strain A-04 and kinetic study of biodegradable copolyester poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production. J Ind Microbiol Biotechnol 35:1205–1215. doi:10.1007/s10295-008-0427-5

    Article  CAS  PubMed  Google Scholar 

  74. Chanprateep S, Buasri K, Muangwong A, Utiswannakul P (2010) Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Degrad Stab 95:2003–2012. doi:10.1016/j.polymdegradstab.2010.07.014

    Article  CAS  Google Scholar 

  75. Pantazaki AA, Papaneophytou CP, Pritsa AG, Liakopoulou-Kyriakides M, Kyriakidis DA (2009) Production of polyhydroxyalkanoates from whey by Thermus thermophilus HB8. Proc Biochem 44:847–853. doi:10.1016/j.procbio.2009.04.002

    Article  CAS  Google Scholar 

  76. Penloglou G, Kretza E, Chatzidoukas C, Parouti S, Kiparissides C (2012) On the control of molecular weight distribution of polyhydroxybutyrate in Azohydromonas lata cultures. Biochem Eng J 62:39–47. doi:10.1016/j.bej.2011.12.013

    Article  CAS  Google Scholar 

  77. Peña C, Castillo T, García A, Millán M, Segura D (2014) Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 7:278–293. doi:10.1111/1751-7915.12129

    Article  PubMed Central  PubMed  Google Scholar 

  78. Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee JK, Kalia VC (2015) Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 182:383–388. doi:10.1016/j.biortech.2015.01.138

    Article  CAS  PubMed  Google Scholar 

  79. Ashby RD, Solaiman DK, Strahan GD, Zhu C, Tappel RC, Nomura CT (2012) Glycerine and levulinic acid: renewable co-substrates for the fermentative synthesis of short-chain poly (hydroxyalkanoate) biopolymers. Bioresour Technol 118:272–280. doi:10.1016/j.biortech.2012.05.092

    Article  CAS  PubMed  Google Scholar 

  80. Zakaria MR, Ariffin H, Johar NAM, Abd-Aziz S, Nishida H, Shirai Y, Hassan MA (2010) Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer from wild-type Comamonas sp. EB172. Polym Degrad Stab 95:1382–1386. doi:10.1016/j.polymdegradstab.2010.01.020

    Article  CAS  Google Scholar 

  81. Ramachandran H, Iqbal NM, Sipaut CS, Abdullah AAA (2011) Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer with various monomer compositions by Cupriavidus sp. USMAA2-4. Appl Biochem Biotechnol 164:867–877. doi:10.1007/s12010-011-9180-8

    Article  CAS  PubMed  Google Scholar 

  82. Keenan TM, Tanenbaum SW, Stipanovic AJ, Nakas JP (2004) Production and characterization of poly-β-hydroxyalkanoate copolymers from Burkholderia cepacia utilizing xylose and levulinic acid. Biotechnol Prog 20:1697–1704. doi:10.1021/bp049873d

    Article  CAS  PubMed  Google Scholar 

  83. Ashby RD, Solaiman DKY, Foglia TA (2002) The synthesis of short- and medium-chain-length poly(hydroxyalkanoate) mixtures from glucose- or alkanoic acid-grown Pseudomonas oleovorans. J Ind Microbiol Biotechnol 28:147–153. doi:10.1038/sj/jim/7000231

    Article  CAS  PubMed  Google Scholar 

  84. Tsuge T (2002) Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J Biosci Bioeng 6:579–584. doi:10.1016/S1389-1723(02)80198-0

    Article  Google Scholar 

  85. Pan P, Inoue Y (2009) Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 34:605–640. doi:10.1016/j.progpolymsci.2009.01.003

    Article  CAS  Google Scholar 

  86. Kabe T, Tsuge T, Kasuya K-I, Takemura A, Hikima T, Takata M, Iwata T (2012) Physical and structural effects of adding ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] to wild-type poly[(R)-3-hydroxybutyrate]. Macromolecules 45:1858–1865. doi:10.1021/ma202285c

    Article  CAS  Google Scholar 

  87. Patel M, Gapes DJ, Newman RH, Dare PH (2009) Physicochemical properties of polyhydroxyalkanoate produced by mixed-culture nitrogen-fixing bacteria. Appl Microbiol Biotechnol 82:545–555. doi:10.1007/s00253-008-1836-0

    Article  CAS  PubMed  Google Scholar 

  88. Xie WP, Chen G-Q (2008) Production and characterization of terpolyester poly(3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaPCJ. Biochem Eng J 38:384–389. doi:10.1016/j.bej.2007.08.002

    Article  CAS  Google Scholar 

  89. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619. doi:10.1016/j.procbio.2004.01.053

    Article  CAS  Google Scholar 

  90. Ghosh PK, Mishra S, Gandhi MR, Upadhyay SC, Paul P, Anand PS, Popat KM, Shrivastav A, Mishra SK, Ondhiya N, Maru RD, Gangadharan D, Brahmbhatt H, Boricha VP, Chaudhary DR, Rewari B (2014) Integrated process for the production of jatropha methyl ester and by-products. European Patent 2,475,754

  91. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. doi:10.1016/j.biortech.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  92. Porwal S, Lal S, Cheema S, Kalia VC (2009) Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS ONE 4:e4438. doi:10.1371/journal.pone.0004438

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Director of CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi and CSIR-WUM (ESC0108), Government of India for providing necessary funds and facilities. M.S. is also thankful to Gargi College, University of Delhi. P.K. is thankful to CSIR for granting Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamtesh Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Kumar, P., Ray, S. et al. Challenges and Opportunities for Customizing Polyhydroxyalkanoates. Indian J Microbiol 55, 235–249 (2015). https://doi.org/10.1007/s12088-015-0528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-015-0528-6

Keywords

Navigation