Skip to main content

Advertisement

Log in

Bioproduction of polyhydroxyalkanoates from bacteria: a metabolic approach

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The advent of molecular biological techniques and a developing environmental awareness initiated a renewed scientific interest in Polyhydroxyalkanoates (PHAs) and the biosynthetic machinery for PHA metabolism has been the area of research over the last two decades. PHAs are polyesters of hydroxyalkanoates synthesized by numerous bacterial species with atleast five different PHA biosynthetic pathways. These are accumulated as an intracellular carbon and energy storage material. This diversity, in combination with genetic and molecular engineering has opened up this area for development of optimum PHA producing organisms. Even though PHAs have been recognized as a good candidate for biodegradable plastics, their industrial application is limited owing to high production cost. The classical microbiology and modern molecular biology have been brought together to decipher the intricacies of PHA metabolism both for production purposes and for the unraveling of the natural role of PHA. This review provides an overview of the different PHA biosynthetic systems, the enzymes involved in PHA biosynthesis and there genetic background followed by a detailed summation of how this natural diversity is being used to develop commercially attractive recombinant process for large scale production of PHAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  Google Scholar 

  • Byrom D (1987) Polymer synthesis by microorganisms: technology and economics. Trends Biotechnol 5:246–250

    Article  CAS  Google Scholar 

  • Cevallos MA, Encarnacion S, Leija A, Mora Y, Mora J (1996) Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly (beta-hydroxybutyrate). J Bacteriol 178:1646–1654

    CAS  Google Scholar 

  • Fukui T, Shiomi N, Doi Y (1998) Expression and characterization of (R)-specific enoyl-coenzyme a hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol 180:667–673

    CAS  Google Scholar 

  • Fukui T, Kichise T, Iwata T, Doi Y (2001) Characterization of 13 kDa granule-associated protein in Aeromonas caviae and biosynthesis of polyhydroxyalkanoates with altered molar composition by recombinant bacteria. Biomacromolecules 2:148–153

    Article  CAS  Google Scholar 

  • Gerngross TU, Snell KD, Peoples OP, Sinskey AJ, Csuhai E, Masamune S, Stubbe J (1994) Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry 33:9311–9320

    Article  CAS  Google Scholar 

  • Ha CS, Cho WJ (2002) Miscibility, properties and biodegradability of microbial polyester containing blends. Prog Polym Sci 27:759–809

    Article  CAS  Google Scholar 

  • Hein S, Sohling B, Gottschalk G, Steinbuchel A (1997) Biosynthesis of poly (4-hydroxybutyric acid) by recombinant strains of Escherichia coli. FEMS Microbiol Lett 53:411–418

    Google Scholar 

  • Huisman GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B (1991) Metabolism of poly (3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266:2191–2198

    CAS  Google Scholar 

  • Huisman GW, Skraly F, Martin DP, Peoples OP (2006) Biological systems for manufacture of polyhydroxyalkanoates polymer containing 4-hydroxy acids. United State patent 6689589

  • Hustede E, Steinbuchel A (1993) Characterization of the polyhydroxyalkanoate synthase gene locus of Rhodobacter sphaeroides. Biotechnol Lett 15:709–714

    CAS  Google Scholar 

  • Jung YM, Lee YH (1997) Investigation of regulatory mechanism of flux of acetyl-CoA in Alcaligenes eutrophus using PHB negative mutant and transformants harboring cloned phbCAB genes. J Microbiol Biotechnol 7:215–222

    CAS  Google Scholar 

  • Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619

    Article  CAS  Google Scholar 

  • Kichise T, Taguchi S, Doi Y (2002) Enhanced Accumulation and Changed Monomer Composition in Polyhydroxyalkanoate (PHA) Copolyester by in vitro Evolution of Aeromonas caviae PHA Synthase. Appl Environ Microbiol 68:2411–2419

    Article  CAS  Google Scholar 

  • Lee SP, Do VM, Huisman GW, Peoples OP (1996) PHB polymerase from Zoogloea ramigera. GenBank accession no. U66242

  • Liebergesell M, Steinbuchel A (1992) Cloning and nucleotide sequences of genes relevant for biosynthesis of poly (3-hydroxybutyric acid) in Chromatium vinosum strain D. Eur J Biochem 209:135–150

    Article  CAS  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly (3-Hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  Google Scholar 

  • Matsusaki H, Abe H, Taguchi K, Fukui T, Doi Y (2000) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthesis gene phaC1 from Pseudomonas sp. 61–3. Appl Microbial Biotechnol 53:401–409

    Article  CAS  Google Scholar 

  • Niamsiri N, Delamarre SC, Kim YR, Batt CA (2004) Engineering of chimeric class II Polyhydroxyalkanoate synthases. Appl Environ Microbiol 70:6789–6799

    Article  CAS  Google Scholar 

  • Park SJ, Lee SY (2003) Identification and characterization of a new enoyl Coenzyme A hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli. J Bacteriol 185:5391–5397

    Article  CAS  Google Scholar 

  • Peoples OP, Sinskey AJ (1989) Fine structural analysis of the Zoogloea ramigera phbA-phbB locus encoding beta-ketothiolase and acetoacetyl-CoA reductase: nucleotide sequence of phbB. Mol Microbiol 3:349–357

    Article  CAS  Google Scholar 

  • Povolo S, Casella S, Nuti MP (1996) Involvement of an orf in the synthesis and/or degradation of polyhydroxyalkanoate (PHA) in Rhizobium meliloti. In: Abstracts of the 1996 International Symposium on Bacterial Polyhydroxyalkanoates, Davos, Switzerland, p 4/01

  • Sandoval A, Arias-Barrau E, Bermejo F, Canedo L, Naharro G, Olivera ER, Luengo JM (2005) Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of Pseudomonas putida. Appl Microbiol Biotechnol 67:97–105

    Article  CAS  Google Scholar 

  • Steinbuchel A (1991) Polyhydroxyalkanoaic acids. In: Byrom D (eds) Biomaterials: novel materials from biological sources. Stockton Press, New York, NY, pp 124–213

    Google Scholar 

  • Steinbuchel A, Hein S (2001) Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms. Adv Biochem Eng Biotechnol 71:81–123

    CAS  Google Scholar 

  • Steinbuchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 103:217–230

    Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  • Takase K, Taguchi S, Doi Y (2003) Enhanced synthesis of poly (3-hydroxybutyrate) in recombinant Escherichia coli by means of error-prone pcr mutagenesis, saturation mutagenesis, and in vitro recombination of the type II polyhydroxyalkanoate synthase gene. J Biochem 133:139–145

    Article  CAS  Google Scholar 

  • Timm A, Byrom D, Steinbuchel A (1990) Formation of blends of various poly (3-hydroxyalkanoic acids) by a recombinant strain of Pseudomonas oleovorans. Appl Microbiol Biotechnol 33:296–301

    Article  CAS  Google Scholar 

  • Tombolini R, Povolo S, Buson A, Squartini A, Nuti MP (1995) Poly-beta-hydroxybutyrate (PHB) biosynthetic genes in Rhizobium meliloti. Microbiology 141:2553–2559

    CAS  Google Scholar 

  • Umeda F, Kitano Y, Murakami Y, Yagi K, Miura Y, Mizoguchi T (1998) Cloning and sequence analysis of the poly (3-hydroxyalkanoic acid)-synthesis genes of Pseudomonas acidophila. Appl Biochem Biotechnol 70–72:341–352

    Article  Google Scholar 

  • Zhuang LB, Koon JJ, Brennan EM, Clouart JD, Horowitz DM, Gerngross TU, Huisman GW (1999) Reduction of cell lysate viscosity during processing of poly (3-hydroxyalkanoates) by chromosomal integration of the staphylococcal nuclease gene in Pseudomonas putida. Appl Environ Microbiol 65:1524–1529

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priti Somal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naik, S., Venu Gopal, S.K. & Somal, P. Bioproduction of polyhydroxyalkanoates from bacteria: a metabolic approach. World J Microbiol Biotechnol 24, 2307–2314 (2008). https://doi.org/10.1007/s11274-008-9745-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9745-z

Keywords

Navigation