Skip to main content
Log in

Phylogenetic Study of Methanol Oxidizers from Chilika-Lake Sediments Using Genomic and Metagenomic Approaches

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Group-wise diversity of sediment methylotrophs of Chilika lake (Lat. 19°28′–19°54′N; Long. 85°06′–85°35′E) Odisha, India at various identified sites was studied. Both the culturable and unculturable (metagenome) methylotrophs were investigated in the lake sediments employing both mxaF and 16S rRNA genes as markers. ARDRA profiling, 16S rRNA gene sequencing, PAGE profiling of HaeIII, EcoRI restricted mxaF gene and the mxaF gene sequences using culture-dependent approach revealed the relatedness of α-proteobacteria and Methylobacterium, Hyphomicrobium and Ancyclobacter sp. The total viable counts of the culturable aerobic methylotrophs were relatively higher in sediments near the sea mouth (S3; Panaspada), also demonstrated relatively high salinity (0.1 M NaCl) tolerance. Metagenomic DNA from the sediments, amplified using GC clamp mxaF primers and resolved through DGGE, revealed the diversity within the unculturable methylotrophic bacterium Methylobacterium organophilum, Ancyclobacter aquaticus, Burkholderiales and Hyphomicrobium sp. Culture-independent analyses revealed that up to 90 % of the methylotrophs were unculturable. The study enhances the general understandings of the metagenomic methylotrophs from such a special ecological niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nayak BK, Acharya BC, Panda UC, Nayak BB, Acharya SK (2004) Variation of water quality in Chilika Lake, Orissa. Indian J Mar Sci 33:164–169

    CAS  Google Scholar 

  2. Rath J, Adhikary SP (2008) Biodiversity assessment of algae in Chilika Lake, East Coast of India. Monitoring and modelling lakes and coastal environments. Springer, Netherlands, pp 22–33

    Chapter  Google Scholar 

  3. Behera PK (1999) Applied botany: biodiversity and biotechnology. UGC refresher course. Botany Department, Berhampur University, India, pp 1–92

    Google Scholar 

  4. Murrell JC, McDonald IR, Bourne DG (1998) Molecular methods for the study of methanotroph ecology. FEMS Microbiol Ecol 27:103–114. doi:10.1111/j.1574-6941.1998.tb00528.x

    Article  CAS  Google Scholar 

  5. Nercessian O, Noyes E, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2005) Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microbiol 71:6885–6899. doi:10.1128/AEM.71.11.6885-6899.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Nercessian O, Kalyuzhnaya MG, Joye SB, Lidstrom ME, Chistoserdova L (2005) Analysis of fae and fhcD Genes in Mono Lake, California. Appl Environ Microbiol 71:8949–8953. doi:10.1128/AEM.71.12.8949-8953.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Antony CP, Kumaresan D, Ferrando L et al (2010) Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact. ISME J 4:1470–1480. doi:10.1038/ismej.2010.70

    Article  CAS  PubMed  Google Scholar 

  8. Yu Z, Mohn WW (2001) Bacterial diversity and community structure in an aerated lagoon revealed by ribosomal intergenic spacer analyses and 16S ribosomal DNA sequencing. Appl Environ Microbiol 67:1565–1574. doi:10.1128/AEM.67.4.1565-1574.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wang P, Wang F, Xu M, Xiao X (2004) Molecular phylogeny of methylotrophs in a deep-sea sediment from a tropical west Pacific Warm Pool. FEMS Microbiol Ecol 47:77–84. doi:10.1016/S0168-6496(03)00252-6

    Article  CAS  PubMed  Google Scholar 

  10. Moussard N, Stralis-Pavese N, Bodrossy L, Neufeld JD, Murrell JC (2009) Identification of active methylotrophic bacteria inhabiting surface sediment of a marine estuary. Environ Microbiol Rep 1:424–433. doi:10.1111/j.1758-2229.2009.00063.x

    Article  CAS  PubMed  Google Scholar 

  11. De Marco P, Pacheco CC, Figueiredo AR, Moradas-Ferreira P (2004) Novel pollutant-resistant methylotrophic bacteria for use in bioremediation. FEMS Microbiol Lett 234:75–80. doi:10.1111/j.1574-6968.2004.tb09515.x

    Article  PubMed  Google Scholar 

  12. Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom ME (1987) Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325:346–348. doi:10.1038/325346a0

    Article  Google Scholar 

  13. Chistoserdova L, Lidstrom ME (2013) Aerobic methylotrophic prokaryotes. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The prokaryotes, 4th edn. Springer, pp 267–285

  14. Vuilleumier S, Chistoserdova L, Lee M-C et al (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 4:e5584. doi:10.1371/journal.pone.0005584

    Article  PubMed Central  PubMed  Google Scholar 

  15. Trotsenko YA, Khmelenina VN (2002) The biology and osmoadaptation of haloalkaliphilic methanotrophs. Microbiology 71:123–132. doi:10.1023/A:1015183832622

    Article  CAS  Google Scholar 

  16. Sanseverino AM, Bastviken D, Sundh I, Pickova J, Enrich-Prast A (2012) Methane carbon supports aquatic food webs to the fish level. PLoS One 7:e42723. doi:10.1371/journal.pone.0042723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Yun J, Zhuang G, Ma A, Guo H, Wang Y, Zhang H (2012) Community structure, abundance, and activity of methanotrophs in the Zoige Wetland of the Tibetan Plateau. Microb Ecol 63:835–843. doi:10.1007/s00248-011-9981-x

    Article  CAS  PubMed  Google Scholar 

  18. Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK, Arora DK (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek 101:777–786. doi:10.1007/s10482-011-9692-9

    Article  CAS  PubMed  Google Scholar 

  19. López JC, Quijano G, Souza TS, Estrada JM, Lebrero R, Muñoz R (2013) Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges. Appl Microbiol Biotechnol 97:2277–2303. doi:10.1007/s00253-013-4734-z

    Article  PubMed  Google Scholar 

  20. Rani A, Porwal S, Sharma R, Kapley A, Purohit HJ, Kalia VC (2008) Assessment of microbial diversity in effluent treatment plants by culture dependent and culture independent approaches. Bioresource Technol 99:7098–7107. doi:10.1016/j.biortech.2008.01.003

    Article  CAS  Google Scholar 

  21. Porwal S, Lal S, Cheema S, Kalia VC (2009) Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS One 4:e4438. doi:10.1371/journal.pone.0004438

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kalia VC, Mukherjee T, Bhushan A, Joshi J, Shankar P, Huma N (2011) Analysis of the unexplored features of rrs (16S rDNA) of the genus Clostridium. BMC Genom 12:18. doi:10.1186/1471-2164-12-18

    Article  CAS  Google Scholar 

  23. Bhushan A, Joshi J, Shankar P, Kushwah J, Raju SC, Purohit HJ, Kalia VC (2013) Development of genomic tools for the identification of certain Pseudomonas up to species level. Indian J Microbiol 53:253–263. doi:10.1007/s12088-013-0412-1

    Article  PubMed Central  PubMed  Google Scholar 

  24. McDonald IR, Murrell JC (1997) The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224

    PubMed Central  CAS  PubMed  Google Scholar 

  25. McDonald IR, Kenna EM, Murrell JC (1995) Detection of methanotrophic bacteria in environmental samples with PCR. Appl Environ Microbiol 61:116–121

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Kalyuzhnaya MG, Hristova KR, Lidstrom ME, Chistoserdova L (2008) Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190:3817–3823. doi:10.1128/JB.00180-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499. doi:10.1146/annurev.micro.091208.073600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. APHA-AWWA-WPCF (2005) Standard methods for the examination of water and waste water, 20th edn. American Public Health Association, Washington

    Google Scholar 

  29. Patt TE, Cole GC, Bland JA, Hanson RS (1974) Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. J Bacteriol 120:955–964

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Pospiech A, Neumann B (1995) A versatile quick-prep of genomic DNA from gram positive bacteria. Trends Genet 11:217–218

    Article  CAS  PubMed  Google Scholar 

  31. Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11:37–50. doi:10.1111/j.1469-8137.1912.tb05611.x

    Article  Google Scholar 

  34. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Henckel T, Friedrich M, Conrad R (1999) Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase and methanol dehydrogenase. Appl Environ Microbiol 65:1980–1990

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Pfaffl M (2001) Development and validation of an externally standardised quantitative insulin-like growth factor-1 RT-PCR using LightCycler SYBR Green I technology. Rapid Cycle Real-Time PCR. Springer, Berlin-Heidelberg, pp 281–291. doi:10.1007/978-3-642-59524-0_30

    Google Scholar 

  37. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving sensitivity of progressive multiple sequence alignments through sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  39. Saitou N, Nei M (1987) The neighbor-joining method a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  40. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791

    Article  Google Scholar 

  41. Hiraishi A, Shimada K (2001) Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. J Gen Appl Microbiol 47:161–180. doi:10.2323/jgam.47.161

    Article  CAS  PubMed  Google Scholar 

  42. Raja P, Balachandar D, Sundaram SP (2008) Genetic diversity and phylogeny of pink pigmented facultative Methylotrophic bacteria isolated from the phyllosphere of tropical crop plants. Biol Fertil Soils 45:45–53. doi:10.1007/s00374-008-0306-2

    Article  Google Scholar 

  43. Bodrossy L, Murrell JC, Dalton H, Kalman M, Puskas LG, Kovacs KL (1995) Heat-tolerant methanotrophic bacteria from the hot water effluent of a natural gas field. Appl Environ Microbiol 61:3549–3555

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Joshi AA, Kanekar PP, Kelkar AS, Shouche YS, Vani AA, Borgave SB, Sarnaik SS (2008) Cultivable bacterial diversity of alkaline Lonar Lake, India. Microbial Ecol 55:163–172

    Article  Google Scholar 

  45. Wang X, Sahr F, Xue T, Sun B (2007) Methylobacterium salsuginis sp. nov. isolated from sea water. Int J Syst Evol Microbiol 57:1699–1703. doi:10.1099/ijs.0.64877-0

    Article  CAS  PubMed  Google Scholar 

  46. Jenkins O, Bryom D, Jones D (1987) Methylophilus: a new genus of methanol utilizing bacteria. Int J Syst Bacteriol 37:446–448. doi:10.1099/00207713-37-4-446

    Article  Google Scholar 

  47. Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing X-H (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49:277–288. doi:10.1016/j.bej.2010.01.003

    Article  CAS  Google Scholar 

  48. Liessens J, Germonpre R, Kersters I, Beernaert S, Verstraete W (1993) Removing nitrate with a methylotrophic fluidized bed: microbiological water quality. J Am Water Works Assoc 85:155–161

    CAS  Google Scholar 

  49. Schmider F, Ottow JCG (1986) Characterization of denitrifying bacteria in the various compartments of a biological sewage plant. Arch Hydrobiol 106:497–512

    Google Scholar 

  50. Brusseau GA, Bulygina ES, Hanson RS (1994) Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria. Appl Environ Microbiol 60:626–636

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the ICAR (Indian Council of Agricultural Research), India for providing the financial and research support. The authors also would like to acknowledge their respective institutional Directors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamlesh K. Meena.

Additional information

The authors Kamlesh Kumar Meena, Snehasish Mishra and Manish Kumar should be regarded as the joint first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, K.K., Kumar, M., Mishra, S. et al. Phylogenetic Study of Methanol Oxidizers from Chilika-Lake Sediments Using Genomic and Metagenomic Approaches. Indian J Microbiol 55, 151–162 (2015). https://doi.org/10.1007/s12088-015-0510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-015-0510-3

Keywords

Navigation