Skip to main content

Advertisement

Log in

Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Today, methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions represent approximately 98 % of the total greenhouse gas (GHG) inventory worldwide, and their share is expected to increase significantly in this twenty-first century. CO2 represents the most important GHG with approximately 77 % of the total GHG emissions (considering its global warming potential) worldwide, while CH4 and N2O are emitted to a lesser extent (14 and 8 %, respectively) but exhibit global warming potentials 23 and 298 times higher than that of CO2, respectively. Most members of the United Nations, based on the urgent need to maintain the global average temperature 2 °C above preindustrial levels, have committed themselves to significantly reduce their GHG emissions. In this context, an active abatement of these emissions will help to achieve these target emission cuts without compromising industrial growth. Nowadays, there are sufficient empirical evidence to support that biological technologies can become, if properly tailored, a low-cost and environmentally friendly alternative to physical/chemical methods for the abatement of GHGs. This study constitutes a state-of-the-art review of the microbiology (biochemistry, kinetics, and waste-to-value processes) and bioreactor technology of CH4, N2O, and CO2 abatement. The potential and limitations of biological GHG degradation processes are critically discussed, and the current knowledge gaps and technology niches in the field are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acién Fernández FG, Fernández Sevilla JM, Sánchez Pérez JA, Molina Grima E, Chisti Y (2001) Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem Eng Sci 56:2721–2732. doi:10.1016/S0009-2509(00)00521-2

    Google Scholar 

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353. doi:10.1016/j.biotechadv.2012.02.005

    Google Scholar 

  • Acién Fernández FG, González-López CV, Fernández Sevilla JM, Molina Grima E (2012) Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl Microbiol Biotechnol 96:577–586. doi:10.1007/s00253-012-4362-z

    Google Scholar 

  • Ahn JH, Kim S, Park H, Rahm B, Pagilla K, Chandran K (2010) N2O emissions from activated sludge processes, 2008–2009: results of a national monitoring survey in the United States. Environ Sci Technol 44:4505–4511. doi:10.1021/es903845y

    CAS  Google Scholar 

  • Akdeniz N, Janni KA, Salnikov IA (2011) Biofilter performance of pine nuggets and lava rock as media. Biores Technol 102:4974–4980. doi:10.1016/j.biortech.2011.01.058

    CAS  Google Scholar 

  • Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220. doi:10.1111/j.1574-6968.1995.tb07421.x

    CAS  Google Scholar 

  • Anthony C (1982) The biochemistry of methylotrophs. Academic, New York

    Google Scholar 

  • Apel WA, Turick CE (1992) The use of denitrifying bacteria for the removal of nitrogen oxides from combustion gases. Fuel 72:1715–1718. doi:10.1016/0016-2361(93)90360-E

    Google Scholar 

  • Arcangeli JP, Arvin E (1999) Modeling the growth of a methanotrophic biofilm: estimation of parameters and viability. Biodegrad 10:177–191

    CAS  Google Scholar 

  • Avalos A, Jones PJ, Heitz M (2012) Methane treatment in biotrickling filters packed with inert materials in presence of a non-ionic surfactant. J Chem Technol Biotechnol 87:848–853. doi:10.1002/jctb.3811

    Google Scholar 

  • Balasubramanian R, Kenney GE, Rosenzweig AC (2011) Dual pathways for copper uptake by methanotrophic bacteria. J Biol Chem 286:37313–37319. doi:10.1074/jbc.M111.284984

    CAS  Google Scholar 

  • Barbosa MJ, Zijffers JW, Nisworo A, Vaes W, van Schoonhoven J, Wijffels RH (2005) Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat-panel reactor using the A-stat technique. Biotechnol Bioeng 89:233–242. doi:10.1002/bit.20346

    CAS  Google Scholar 

  • Barsanti L, Gualtieri P (2006) Algae: anatomy, biochemistry and biotechnology. CRC, Boca Raton

    Google Scholar 

  • Basu P, Katterle B, Andersson KK, Dalton H (2003) The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein. Biochem J 369:417–429. doi:10.1042/BJ20020823

    CAS  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187. doi:10.1126/science.1169984

    CAS  Google Scholar 

  • Béchet Q, Muñoz R, Shilton A, Guieysse B (2012) Outdoor cultivation of temperature-tolerant Chlorella sorokiniana in a column photobioreactor under low power-input. Biotechnol Bioeng n/a-n/a. doi:10.1002/bit.24603

  • Bédard C, Knowles R (1989) Physiology, biochemistry and specific inhibitors of CH4, NH4 and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84

    Google Scholar 

  • Behrenfeld M, Prasil O, Kolber Z, Babin M, Falkowski P (1998) Compensatory changes in photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynth Res 58:259–268. doi:10.1023/A:1006138630573

    CAS  Google Scholar 

  • Ben-Amotz A (1999) Production of β-carotene in Dunaliella. In: Cohen Z (ed) Chemicals from microalgae. Taylor and Francis, London, pp 196–204

    Google Scholar 

  • Bender M, Conrad R (1992) Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios. FEMS Microbiol Ecol 101:261–270

    CAS  Google Scholar 

  • Bender M, Conrad R (1994) Methane oxidation activity in various soils and freshwater sediments: occurrence, characteristics, vertical profiles, and distribution on grain size fractions. J Geophys Res 99:16531–16540

    CAS  Google Scholar 

  • Bender M, Conrad R (1995) Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol Biochem 27:1517–1527. doi:10.1016/0038-0717(95)00104-M

    CAS  Google Scholar 

  • Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manag 38:S475–S479. doi:10.1016/S0196-8904(96)00313-5

    CAS  Google Scholar 

  • Berger J, Fornés LV, Ott C, Jager J, Wawra B, Zanke U (2005) Methane oxidation in a landfill cover with capillary barrier. Waste Manag 25:369–373. doi:10.1016/j.wasman.2005.02.005

    CAS  Google Scholar 

  • Bodrossy L, Kovács KL, McDonald IR, Murrell JC (1999) A novel thermophilic methane-oxidizing γ-Proteobacterium. FEMS Microbiol Lett 170:335–341. doi:10.1016/S0378-1097(98)00552-7

    CAS  Google Scholar 

  • Börjesson G (1997) Methane oxidation in landfill cover soils. Doctoral thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden

  • Börjesson G, Sundh I, Tunlid A, Svensson BH (1998) Methane oxidation in landfill cover soils as revealed by potential oxidation measurements and phospholipid fatty acid analyses. Soil Biol Biochem 30:1423–1433. doi:10.1016/S0038-0717(97)00257-5

    Google Scholar 

  • Born M, Dörr H, Levin I (1990) Methane consumption in aerated soils of the temperate zone. Tellus 42:2–8. doi:10.1034/j.1600-0889.1990.00002.x

    Google Scholar 

  • Boswell J (2001) Understand the capabilities of bio-oxidation. Chem Eng Prog 98:48–53

    Google Scholar 

  • Boussiba S, Vonshak A, Cohen Z, Avissar I, Richmond A (1987) Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass 12:37–47. doi:10.1016/0144-4565(87)90006-0

    CAS  Google Scholar 

  • Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiol 143:1451–1459. doi:10.1099/00221287-143-4-1451

    CAS  Google Scholar 

  • Bowman JP (2006) The methanotrophs—the families Methylococcaceae and Methylocystaceae Ch. 3.1.14. Prokaryotes 5:266–289. doi:10.1007/0-387-30745-1_15

  • Bratina BJ, Brusseau GA, Hanson RS (1992) Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria. Int J Syst Bacteriol 42:645–648. doi:10.1099/00207713-42-4-645

    CAS  Google Scholar 

  • Brusseau GA, Bulygina E, Hanson RS (1994) Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria. Appl Environ Microbiol 60:626–636

    CAS  Google Scholar 

  • Buchholz LA, Valklump J, Collins MLP, Brantner CA, Remsen CC (1995) Activity of methanotrophic bacteria in Green-Bay sediments. FEMS Microbiol Ecol 16:1–8. doi:10.1111/j.1574-6941.1995.tb00262.x

    CAS  Google Scholar 

  • Calvin M (1989) Forty years of photosynthesis and related activities. Photosynth Res 21:3–16. doi:10.1007/BF00047170

    Google Scholar 

  • Carlsson AS, van Beilen JB, Möller R, Clayton D (2007) Micro and macro-algae: utility for industrial applications. CPL, Newbury

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Progr 22:1490–1506. doi:10.1021/bp060065r

    CAS  Google Scholar 

  • Cerveny J, Setlik I, Trtilek M, Nedbal L (2009) Photobioreactor for cultivation and real-time, in situ measurement of O2 and CO2 exchange rates, growth dynamics, and of chlorophyll fluorescence emission of photoautotrophic microorganisms. Eng Life Sci 9:247–253. doi:10.1002/elsc.200800123

    CAS  Google Scholar 

  • Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5:593–604. doi:10.1007/BF02184638

    Google Scholar 

  • Chen CY, Yeh KL, Su HM, Lo YC, Chen WM, Chang JS (2010) Strategies to enhance cell growth and achieve high-level oil production of a Chlorella vulgaris isolate. Biotechnol Prog 26:679–686. doi:10.1002/btpr.381

    CAS  Google Scholar 

  • Chida K, Shen G, Kodoma T, Minoda Y (1983) Acidic polysaccharide production from methane by a new methane-oxidizing bacterium H-2. Agric Biol Chem 47:275–280

    CAS  Google Scholar 

  • Chini G, Rodolfi L, Biondi N, Tredici MR (2006) Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquacult 261:932–943. doi:10.1016/j.aquaculture.2006.08.011

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi:10.1016/j.biotechadv.2007.02.001

    CAS  Google Scholar 

  • Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13:2603–2622. doi:10.1111/j.1462-2920.2011.02464.x

    CAS  Google Scholar 

  • Choi DW, Kunz RC, Boyd ES, Semrau JD, Antholine WE, Han JI, Zahn JA, Boyd JM, De La Mora AM, DiSpirito AA (2003) The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH: quinone oxidoreductase complex from Methylococcus capsulatus Bath. J Bacteriol 185:5755–5764. doi:10.1128/JB.185.19.5755-5764.2003

    CAS  Google Scholar 

  • Choi DW, Antholine WA, Do YS, Semrau JD, Kisting CJ, Kunz RC, Campbell D, Rao V, Hartsel SC, DiSpirito AA (2005) Effect of methanobactin on methane oxidation by the membrane-associated methane monooxygenase in Methylococcus capsulatus Bath. Microbiol 151:3417–3426. doi:10.1099/mic.0.28169-0

    CAS  Google Scholar 

  • Chou MS, Lin JH (2000) Biotrickling filtration of nitric oxide. J Air Waste Manage Assoc 50:502–508. doi:10.1080/10473289.2000.10464033

    CAS  Google Scholar 

  • Christophersen M, Linderød L, Jensen PE, Kjeldsen P (2000) Methane oxidation at low temperatures in soil exposed to landfill gas. J Environ Qual 29:1989–1997

    CAS  Google Scholar 

  • Colliver BB, Stephenson T (2000) Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnol Adv 18:219–232. doi:10.1016/S0734-9750(00)00035-5

    CAS  Google Scholar 

  • Costa JAV, Linde GA, Atala DIP, Mibielli GM, Krüger RT (2000) Modeling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World J Microbiol Biotechnol 16:15–18. doi:10.1023/A:1008992826344

    Google Scholar 

  • Covenant of Mayors (2012) Technical annex to the SEAP template instructions document: the emission factors. Available at http://www.covenantofmayors.eu/support/faq_en.html?id_faq=32. Accessed 11 January 2013

  • Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol 24:329–337. doi:10.1007/s10811-012-9810-8

    CAS  Google Scholar 

  • Dalton H, Prior SD, Leak DJ, Stanley SH (1984) Regulation and control of methane monooxygenase. In: Crawford RL, Hanson RS (eds) Microbial growth on C1 compounds. American Society for Microbiology, Washington, pp 75–82

    Google Scholar 

  • Dalton H (1992) Methane oxidation by methanotrophs: physiological and mechanistic implications. In: Murrell JC, Dalton H (eds) Methane and methane utilizers. Plenum, New York, pp 85–114

    Google Scholar 

  • Davies SL, Whittenbury R (1970) Fine structure of methane and other hydrocarbon oxidizing bacteria. J Gen Microbiol 61:227–232. doi:10.1099/00221287-61-2-227

    CAS  Google Scholar 

  • de Godos I, Blanco S, García-Encina PA, Becares E, Muñoz R (2009) Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Biores Technol 100:4332–4339. doi:10.1016/j.biortech.2009.04.016

    Google Scholar 

  • de Morais MG, Costa JAV (2007a) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445. doi:10.1016/j.jbiotec.2007.01.009

    Google Scholar 

  • de Morais MG, Costa JAV (2007b) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352. doi:10.1007/s10529-007-9394-6

    CAS  Google Scholar 

  • de Morais MG, Costa JAV (2007c) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Convers Manage 48:2169–2173. doi:10.1016/j.enconman.2006.12.011

    Google Scholar 

  • Dedysh SN, Panikov NS, Tiedje JM (1998) Acidophilic methanotrophic communities from Sphagnum peat bogs. Appl Environ Microbiol 64:922–929

    CAS  Google Scholar 

  • Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261

    CAS  Google Scholar 

  • Delhoménie MC, Nikiema J, Bibeau L, Heitz M (2009) A new method to determine the microbial kinetic parameters in biological air filters. Chem Eng Sci 63:4126–4136. doi:10.1016/j.ces.2008.05.020

    Google Scholar 

  • Desloover J, Puig S, Virdis B, Clauwaert P, Boeckx P, Verstraete W, Book N (2011) Biocathodic nitrous oxide removal in bioelectrochemical systems. Environ Sci Technol 45:10557–10566. doi:10.1021/es202047x

    CAS  Google Scholar 

  • Desloover J, Vlaeminck SE, Clauwaert P, Verstraete W, Boon N (2012) Strategies to mitigate N2O emissions from biological nitrogen removal systems. Curr Opin Biotechnol 23:474–482. doi:10.1016/j.copbio.2011.12.030

    CAS  Google Scholar 

  • Devinny JS, Deshusses MA, Webster TS (1999) Biofiltration for air pollution control. Lewis, Boca Raton

    Google Scholar 

  • Doucha J, Straka F, Livansky K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412. doi:10.1007/s10811-005-8701-7

    Google Scholar 

  • du Plessis CA, Strauss JM, Sebapalo EMT, Riedel KHJ (2003) Empirical model for methane oxidation using a composted pine bark biofilter. Fuel 82:1359–1365. doi:10.1016/S0016-2361(03)00040-1

    Google Scholar 

  • Dunfield P, Knowles R, Dumont R, Moore TR (1993) Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol Biochem 25:321–325

    CAS  Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, Ly B, Saw JH, Zhou A, Ren Y, Wang J, Mountain BW, Crowe MA, Weatherby TM, Bodelier PLE, Liesack W, Feng L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–883. doi:10.1038/nature06411

    CAS  Google Scholar 

  • Edwards GE, Walker DA (2004) Photosynthetic carbon assimilation. In: Archer MD, Barber J (eds) Molecular to global photosynthesis. Imperial College Press, London, pp 189–220

    Google Scholar 

  • Einola JKM, Karhu AE, Rintala JA (2008) Mechanically–biologically treated municipal solid waste as a support medium for microbial methane oxidation to mitigate landfill greenhouse emissions. Waste Manag 28:97–111. doi:10.1016/j.wasman.2007.01.002

    CAS  Google Scholar 

  • Enebo L (1967) A methane-consuming green algae. Acta Chem Scand 21:625–632

    CAS  Google Scholar 

  • Environmental Protection Agency (2011) Inventory of US greenhouse gas emissions and sinks: 1990–2009 (April 2011), EPA 430-R-11-005. Available at http://www.epa.gov/climatechange/emissions/usinventoryreport.html. Accessed 1 June 2012

  • Eriksen NT (2008) The technology of microalgal culturing. Biotechnol Lett 30:1525–1536. doi:10.1007/s10529-008-9740-3

    CAS  Google Scholar 

  • Estrada J, Kraakman B, Muñoz R, Lebrero R (2011) A comparative analysis of odour treatment technologies in wastewater treatment plants. Environ Sci Technol 45:1100–1106. doi:10.1021/es103478j

    CAS  Google Scholar 

  • Estrada J, Rodríguez E, Quijano G, Muñoz R (2012a) Influence of gaseous VOC concentration on the biodiversity and biodegradation performance of microbial communities. Bioprocess Biosyst Eng 35:1477–1488. doi:10.1007/s00449-012-0737-x

    CAS  Google Scholar 

  • Estrada JM, Kraakman NJR, Lebrero R, Muñoz R (2012b) A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies. Biotechnol Adv 30:1354–1363. doi:10.1016/j.biotechadv.2012.02.010

    CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, De Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548. doi:10.1038/nature08883

    CAS  Google Scholar 

  • European Environment Agency (2011) Annual European Union greenhouse gas inventory 1990–2009 and inventory report 2011. Available at http://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2011. Accessed 1 June 2012

  • Figueroa RA (1993) Methane oxidation in landfill top soils. In: Christensen TH, Cossu R, Stegmann R (eds) Proceedings Sardinia ’93, vol. I, Fourth International Landfill Symposium, CISA, Environmental Sanitary Engineering Center, Cagliari, Italy, pp 701–716

  • Flanagan WP, Apel AA, Barnes JM, Lee BD (2002) Development of gas phase bioreactors for the removal of nitrogen oxides from synthetic flue gas streams. Fuel 81:1953–1961. doi:10.1016/S0016-2361(02)00130-8

    CAS  Google Scholar 

  • Foley J, de Hass D, Yuan Z, Lant P (2010) Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Res 44:831–844. doi:10.1016/j.watres.2009.10.033

    CAS  Google Scholar 

  • García Camacho F, Gallardo Rodríguez JJ, Sánchez Mirón A, Belarbi EH, Chisti Y, Molina Grima E (2011) Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga. Process Biochem 46:936–944. doi:10.1016/j.procbio.2011.01.005

    Google Scholar 

  • Gebert J, Gröngröft A, Miehlich G (2001) Microbial reduction of methane and trace gas emissions in a biofilter. In: Proceedings from the 8th International Waste Management and Landfill Symposium, S Margherita di Pula, Cagliari, Italy, pp 585–593; SWANA-Solid Waste Association of North America, Silver Spring, MD, USA

  • Gebert J, Gröngröft A, Miehlich G (2003) Kinetics of microbial landfill methane oxidation in biolfilters. Waste Manag 23:609–619. doi:10.1016/S0956-053X(03)00105-3

    CAS  Google Scholar 

  • Gebert J, Gröngröft A (2006) Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Manag 26:399–407. doi:10.1016/j.wasman.2005.11.007

    CAS  Google Scholar 

  • Gioardano M, Beardall J, Raven JA (2005) Mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131. doi:annurev.pp.08.060157.001521/annurev.arplant.56.032604.144052

    Google Scholar 

  • Girard M, Avalos Ramirez A, Buelna G, Heitz M (2011) Biofiltration of methane at low concentrations representative of the piggery industry—influence of the methane and nitrogen concentrations. Chem Eng J 168:151–158. doi:10.1016/j.cej.2010.12.054

    CAS  Google Scholar 

  • Gladue RM, Maxey JE (1994) Microalgal feeds for aquaculture. J Appl Phycol 6:131–141. doi:10.1007/BF02186067

    Google Scholar 

  • Glass JB, Orphan VJ (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Front Microbiol 3:61. doi:10.3389/fmicb.2012.00061

    Google Scholar 

  • Golden TC, Taylor FW, Salter EH, Ali Kalbassi M, Raiswell CJ (2004) Process for nitrous oxide removal. US Patent 6719827 B2

  • González López CV, Acién Fernández FG, Fernández Sevilla JM, Sánchez Fernández JF, Cerón García MC, Molina Grima E (2009) Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Biores Technol 100:5904–5910. doi:10.1016/j.biortech.2009.04.070

    Google Scholar 

  • González López CV, Acién Fernández FG, Fernández Sevilla JM, Sánchez Fernández JF, Molina Grima E (2012) Development of a process for efficient use of CO2 from flue gases in the production of photosynthetic microorganisms. Biotechnol Bioeng 109:1637–1650. doi:10.1002/bit.24446

    Google Scholar 

  • González López CV, Cerón García MC, Fernández Sevilla JM, González Céspedes AM, Camacho Rodríguez J, Molina Grima E (2013) Medium recycling for Nannochloropsis gaditana cultures for aquaculture. Bioresour Technol 129:430–438. doi:10.1016/j.biortech.2012.11.061

    Google Scholar 

  • Gouveia L, Veloso V, Reis A, Fernandes H, Novais J, Empis J (1996) Evolution of pigment composition in Chlorella vulgaris. Bioresour Technol 57:157. doi:10.1016/0960-8524(96)00058-2

    CAS  Google Scholar 

  • Graham DW, Chaudhary JA, Hanson RS, Arnold RG (1993) Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microb Ecol 25:1–17. doi:10.1007/BF00182126

    CAS  Google Scholar 

  • Granger J, Ward BB (2003) Accumulation of nitrogen oxides in copper-limited cultures of denitrifying bacteria. Limnol Oceanogr 48:313–318

    CAS  Google Scholar 

  • Gustavsson DJ, la Cour Jansen J (2011) Dynamics of nitrogen oxides emission from a full-scale sludge liquor treatment plant with nitritation. Water Sci Technol 63:2838–2845

    CAS  Google Scholar 

  • Hall DO, Rao K (1999) Photosynthesis, 6th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Hall DO, Acién Fernández FG, Cañizares Guerrero E, Rao KK, Molina Grima E (2003) Outdoor helical tubular photobioreactors for microalgal production: modeling of fluid-dynamics and mass transfer and assessment of biomass productivity. Biotechnol Bioeng 82:62–73. doi:10.1002/bit.10543

    CAS  Google Scholar 

  • Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochem 31:3345–3348. doi:10.1016/0031-9422(92)83682-O

    CAS  Google Scholar 

  • Hanson RS (1980) Ecology and diversity of methylotrophic organisms. Adv Appl Microbiol 26:3–39. doi:10.1016/S0065-2164(08)70328-9

    CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  Google Scholar 

  • Haubrichs R, Widmann R (2006) Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas. Waste Manag 26:408–416. doi:10.1016/j.wasman.2005.11.008

    CAS  Google Scholar 

  • Håvelsrud OE, Haverkamp THA, Kristensen T, Jakobsen KS, Rike AG (2011) A metagenomic study of methanotrophic microorganisms in Coal Oil Point seep sediments. BMC Microbiol 11:221. doi:10.1186/1471-2180-11-221

    Google Scholar 

  • Henckel T, Roslev P, Conrad R (2000) Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2:666–679. doi:10.1046/j.1462-2920.2000.00149.x

    CAS  Google Scholar 

  • Hernández M, Quijano G, Thalasso F, Daugulis AJ, Villaverde S, Muñoz R (2010) A comparative study of solid and liquid non-aqueous phases for the biodegradation of hexane in two-phase partitioning bioreactors. Biotechnol Bioeng 106:731–740. doi:10.1002/bit.22748

    Google Scholar 

  • Herzog H (2001) What future for carbon capture and sequestration? Environ Sci Technol 35:148A–153A

    CAS  Google Scholar 

  • Hettiarachchi VC, Hettiaratchi PJ, Mehrotra AK, Kumar S (2011) Field-scale operation of methane biofiltration systems to mitigate point source methane emissions. Environ Pollut 159:1715–1720. doi:10.1016/j.envpol.2011.02.029

    CAS  Google Scholar 

  • Higgins IJ, Best DJ, Hammond RC, Scott D (1981) Methane-oxidizing microorganisms. Microbiol Rev 45:556–590

    CAS  Google Scholar 

  • Hill R, Bendall F (1960) Function of two cytochrome components in chloroplasts: a work hypothesis. Nature 186:136–137. doi:10.1038/186136a0

    CAS  Google Scholar 

  • Ho SH, Chen CY, Lee DJ, Chang JS (2011) Perspectives on microalgal CO2-emission mitigation systems—a review. Biotechnol Adv 29:189–198. doi:10.1016/j.biotechadv.2010.11.001

    CAS  Google Scholar 

  • Hoehler TM, Alperin MJ, Albert DB, Martens CS (1995) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Glob Biogeochem Cycles 8:451–463. doi:10.1029/94GB01800

    Google Scholar 

  • Hood MC (2011) Design and operation of a biofilter for treatment of swine house pit ventilation exhaust. Thesis from Faculty of North Carolina State University (Biological and Agricultural Engineering)

  • Hooper AB, Terry KR (1979) Hydroxylamine oxidoreductase of Nitrosomonas: production of nitric oxide from hydroxylamine. Biochem Biophys Acta 571:12–20. doi:10.1016/0005-2744(79)90220-1

    CAS  Google Scholar 

  • Hou CT, Laskin AI, Patel RN (1978) Growth and polysaccharide production by Methylocystis parvus OBBP on methanol. Appl Environ Microbiol 37:800–804

    Google Scholar 

  • Hou S, Makarova KS, Saw JHW, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam W (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26. doi:10.1186/1745-6150-3-26

    Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60. doi:10.1002/(SICI)1097-0290(19960705)51:1<51::AID-BIT6>3.0.CO;2-#

    CAS  Google Scholar 

  • Hu Q, Zarmi Y, Richmond A (1998) Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur J Phycol 33:165–171. doi:10.1080/09670269810001736663

    Google Scholar 

  • Humer M, Lechner P (1999) Alternative approach to the elimination of greenhouse gases from old landfills. Waste Manag Res 17:443–452. doi:10.1034/j.1399-3070.1999.00064.x

    CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) Climate change 2007: synthesis report. Available at http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm. Accessed 12 January 2013

  • Iverson TM (2006) Evolution and unique bioenergetic mechanisms in oxygenic photosynthesis. Curr Opin Chem Biol 10:91–100. doi:10.1016/j.cbpa.2006.02.013

    CAS  Google Scholar 

  • Jacob-Lopes E, Revah S, Hernández S, Shirai K, Franco TT (2009) Development of operational strategies to remove carbon dioxide in photobioreactors. Chem Eng J 153:120–126. doi:10.1016/j.cej.2009.06.025

    CAS  Google Scholar 

  • Joergensen L (1985) The methane mono-oxygenase reaction system studied in vivo by membrane-inlet mass spectrometry. Biochem J 225:441–448

    CAS  Google Scholar 

  • Kalkowski I, Conrad R (1991) Metabolism of nitric-oxide in denitrifying Pseudomonas aeruginosa and nitrate-respiring Bacillus cereus. FEMS Microbiol Lett 82:107–111. doi:10.1111/j.1574-6968.1991.tb04848.x

    CAS  Google Scholar 

  • Kallistova AY, Kevbrina MV, Nekrasova VK, Glagolev MV, Serebryanaya MI, Nozhevnikova AN (2005) Methane oxidation in landfill cover soil. Microbiology 74:608–614. doi:10.1007/s11021-005-0110-z

    CAS  Google Scholar 

  • Kalyuzhnaya MG, Khmelenina VN, Kotelnikova S, Holmquist L, Pedersen K, Trotsenko YA (1999) Methylomonas scandinivica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Syst Appl Microbiol 22:565–572. doi:10.1016/S0723-2020(99)80010-1

    CAS  Google Scholar 

  • Kampschreur MJ, van der Star WRL, Wielders HA, Mulder JW, Jetten MSM, van Loosdrecht MCM (2008) Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Res 42:812–826. doi:10.1016/j.watres.2007.08.022

    CAS  Google Scholar 

  • Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM (2009) Nitrous oxide emission during wastewater treatment. Water Res 43:4093–4103. doi:10.1016/j.watres.2009.03.001

    CAS  Google Scholar 

  • Karlsson J, Clarke AK, Chen ZY, Park YI, Hugghins SY, Husic HD, Moroney JV, Samuelsson G (1998) A novel α-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J 17:1208–1216. doi:10.1093/emboj/17.5.1208

    CAS  Google Scholar 

  • Kightley D, Nedwell DB, Cooper M (1995) Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soils microcosms. Appl Environ Microbiol 61:592–610

    CAS  Google Scholar 

  • Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D, Sherwood PMA (2004) Methanobactin, a copper-acquisition compound from methane-oxidizing bacteria. Science 305:1612–1615. doi:10.1126/science.1098322

    CAS  Google Scholar 

  • Knief C, Dunfield PF (2005) Response and adaptation of different methanotrophic bacteria to low methane mixing ratios. Environ Microbiol 7:1307–1317. doi:10.1111/j.1462-2920.2005.00814.x

    CAS  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334. doi:annurev.pp.08.060157.001521/annurev.micro.61.080706.093130

    CAS  Google Scholar 

  • Knowles R (1993) Methane: process of production and consumption. Agricultural ecosystem effects on trace gases and global climate change. American Society of Agronomy, Madison, pp 145–156

    Google Scholar 

  • Kodama M, Ikemoto H, Miyachi S (1993) A new species of highly CO2-tolerant fast-growing marine microalga suitable for high-density culture. J Marine Biotechnol 1:21–25

    Google Scholar 

  • Koh SC, Bowman JP, Sayler GS (1993) Soluble methane monooxygenase production and trichloroethylene degradation by a type methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol 59:960–967

    CAS  Google Scholar 

  • Kumar A, Yuan X, Sahu AK, Dewulf J, Ergas SJ, Van Langenhove H (2010a) A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. J Chem Technol Biotechnol 85:387–394. doi:10.1002/jctb.2332

    CAS  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010b) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380. doi:10.1016/j.tibtech.2010.04.004

    CAS  Google Scholar 

  • Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102:4945–4953. doi:10.1016/j.biortech.2011.01.054

    CAS  Google Scholar 

  • Lee YK, Ding SY (1994) Cell cycle and accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J Phycol 30:445–449. doi:10.1111/j.0022-3646.1994.00445.x

    CAS  Google Scholar 

  • Lidstrom ME, Stirling DI (1990) Methylotrophs: genetics and commercial applications. Annu Rev Microbiol 44:27–58. doi:annurev.pp.08.060157.001521/annurev.mi.44.100190.000331

    CAS  Google Scholar 

  • Lipscomb JD (1994) Biochemistry of the soluble methane monooxygenase. Annu Rev Microbiol 48:371–399. doi:annurev.pp.08.060157.001521/annurev.mi.48.100194.002103

    CAS  Google Scholar 

  • Löffler G, Wargadalam VJ, Winter F, Hofbauer H (2002) Decomposition of nitrous oxide at medium temperatures. Combust Flame 120:427–438. doi:10.1016/S0010-2180(99)00106-6

    Google Scholar 

  • Lontoh S, Semrau JD (1998) Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particulate methane monooxygenase. Appl Environ Microb 64:1106–1114

    CAS  Google Scholar 

  • Lundquist T, Woertz I, Quinn NW, Benemann J (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, University of California, Berkeley

    Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2006) Brock, biology of microorganisms, 10th edn. Pearson, New Jersey

    Google Scholar 

  • Mandeno G, Craggs R, Tanner C, Sukias J, Webster-Brown J (2005) Potential biogas scrubbing using a high rate pond. Water Sci Technol 51:253–256

    CAS  Google Scholar 

  • Massey University (2011) Algal raceway simulator. Available at http://algae.massey.ac.nz/. Accessed 1 November 2012

  • Matsuda Y, Bozzo GG, Colman B (1998) Regulation of dissolved inorganic carbon transport in green algae. Can J Bot 76:1072–1083. doi:10.1139/b98-072

    CAS  Google Scholar 

  • Matsumoto H, Shioji N, Hamasaki A, Ikuta Y, Fukuda Y, Sato M, Endo N, Tsukamoto T (1995) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 51:681–692. doi:10.1007/BF02933469

    Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Trends Plant Sci 4:130–135. doi:10.1016/S1360-1385(99)01387-4

    Google Scholar 

  • Melse RW, Van der Werf AW (2005) Biofiltration for mitigation of methane emission from animal husbandry. Environ Sci Technol 39:5460–5468. doi:10.1021/es048048q

    CAS  Google Scholar 

  • Merchuk JC, García-Camacho F, Molina-Grima E (2007) Photobioreactor design and fluid dynamics. Chem Biochem Eng Q 21:345–355

    CAS  Google Scholar 

  • Metting FB (1996) Biodiversity and application of microalgae. J Ind Microbiol Biotechnol 17:477–489. doi:10.1007/BF01574779

    CAS  Google Scholar 

  • Miller AG, Espie G, Canvin DT (1990) Physiological-aspects of CO2 and HCO3 transport by cyanobacteria—a review. Can J Bot Rev Can Bot 68:1291–1302. doi:10.1139/b90-165

    CAS  Google Scholar 

  • Mitra M, Melis A (2008) Optical properties of microalgae for enhanced biofuels production. Opt Expr 16:21807–21820. doi:10.1364/OE.16.021807

    CAS  Google Scholar 

  • Miyahara M, Kim SW, Fushinobu S, Takaki K, Yamada T, Watanabe A, Miyauchi K, Endo G, Wakagi T, Shoun H (2010) Potential of aerobic denitrification by Pseudomonas stutzeri TR2 to reduce nitrous oxide emissions from wastewater treatment plants. Appl Environ Microbiol 76:4619–4625. doi:10.1128/AEM.01983-09

    CAS  Google Scholar 

  • Miyairi S (1995) CO2 assimilation in a thermophilic cyanobacterium. Energy Convers Manag 36:763–766. doi:10.1016/0196-8904(95)00116-U

    CAS  Google Scholar 

  • Miziorko HM, Lorimer GH (1983) Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annu Rev Biochem 52:507–535. doi:annurev.pp.08.060157.001521/annurev.bi.52.070183.002451

    CAS  Google Scholar 

  • Mohanty SR, Bodelier PLE, Floris V, Conrad R (2006) Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:1346–1354. doi:10.1128/AEM.72.2.1346-1354.2006

    CAS  Google Scholar 

  • Molina Grima E, Belarbi EH, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515. doi:10.1016/S0734-9750(02)00050-2

    CAS  Google Scholar 

  • Morita M, Watanabe Y, Saiki H (2000) Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol Bioeng 69:693–698. doi:10.1002/1097-0290(20000920)69:6<693::AID-BIT14>3.0.CO;2-0

    CAS  Google Scholar 

  • Morita M, Watanabe Y, Saiki H (2002) Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions. Biotechnol Bioeng 77:155–162. doi:10.1002/bit.10119

    CAS  Google Scholar 

  • Moroney JV, Somanchi A (1999) How do algae concentrate CO2 to increase the efficiency of photosynthetic carbon fixation. Plant Physiol 119:9–16. doi:10.1104/pp.119.1.9

    CAS  Google Scholar 

  • Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301. doi:10.1007/s00253-010-2697-x

    CAS  Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815. doi:10.1016/j.watres.2006.06.011

    Google Scholar 

  • Muñoz R, Villaverde S, Guieysse B, Revah S (2007) Two-phase partitioning bioreactors for treatment of volatile organic compounds. Biotechnol Adv 25:410–422. doi:10.1016/j.biotechadv.2007.03.005

    Google Scholar 

  • Muñoz R, Alzate ME, Bahr M, Díaz I, Díaz M, Dominguez A (2012) Microalgae bring an opportunity to reduce the CO2 footprint of WWTPs by coupling biogas upgrading and nutrients removal from centrates. Proceedings of the IWA international conference EcoTechnologies for Wastewater Treatment, Santiago de Compostela, pp 25–27

  • Muramatsu H, Tokura K, Mori T, Akahori R, Watanabe K, Satsuma T, Hattori T, Murakami Y (1997) Inhibitory effect of oxygen on catalytic removal of nitrous oxide with methane. Energy Convers Manag 38:1399–1403. doi:10.1016/S0196-8904(96)00169-0

    CAS  Google Scholar 

  • Nagase H, Eguchi K, Yoshihara K, Hirata K, Miyamoto K (1998) Improvement of microalgal NO x removal in bubble column and airlift reactors. J Ferment Bioeng 86:421–423. doi:10.1016/S0922-338X(99)89018-7

    CAS  Google Scholar 

  • Nakajima Y, Ueda R (1997) Improvement of photosynthesis in dense microalgal suspensions by reduction of light harvesting pigments. J Appl Phycol 9:503–510. doi:10.1023/A:1007920025419

    CAS  Google Scholar 

  • Nascimento DM, Hudepohl NJ, Schroeder ED, Chang DPY (2000) Bio-oxidation of nitric oxide in a nitrifying aerobic filter. Proceedings of the 93rd Annual Meeting, Air and Waste Management Association, Salt Lake City, UT

  • Nelson DL, Cox MM (2005) Lehninger principles of biochemistry, 4th edn. WH Freeman and Company, New Jersey

  • Nielsen AK, Gerdes K, Murrell JC (1997) Cooper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium. Mol Microbiol 25:399–409. doi:10.1046/j.1365-2958.1997.4801846.x

    CAS  Google Scholar 

  • Nikiema J, Brzezinski R, Heitz M (2007) Elimination of methane generated from landfills by biofiltration: a review. Rev Environ Sci Biotechnol 6:261–284. doi:10.1007/s11157-006-9114-z

    CAS  Google Scholar 

  • Nikiema J, Heitz M (2009) The influence of the gas flow rate during methane biofiltration on an inorganic packing material. Can J Chem Eng 87:136–142. doi:10.1002/CJCE.20131

    Google Scholar 

  • Norsker NH, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production—a close look at the economics. Biotechnol Adv 29:24–27. doi:10.1016/j.biotechadv.2010.08.005

    CAS  Google Scholar 

  • O’Connor M (1981) Regulation and genetics in facultative methylotrophic bacteria. In: Dalton H (ed) Microbial growth on C1 compounds. Heyden, London, pp 294–300

    Google Scholar 

  • Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng 3:1121–1132. doi:10.1002/bit.260230519

    Google Scholar 

  • Ogbonna JC, Tanaka H (1998) Cyclic autotrophic/heterotrophic cultivation of photosynthetic cells: a method of achieving continuous cell growth under light/dark cycles. Biores Technol 65:65–72. doi:10.1016/S0960-8524(98)00018-2

    CAS  Google Scholar 

  • Ogbonna JC, Tanaka H (2000) Light requirement and photosynthetic cell cultivation—development of processes for efficient light utilization in photobioreactors. J Appl Phycol 12:207–218. doi:10.1023/A:1008194627239

    Google Scholar 

  • Omelchenko L, Savel’eva ND, Vasil’ev LV, Zavarin GA (1993) A psychrophilic methanotrophic community from a tundra soil. Microbiol 61:754–759. doi:10.1177/0734242X09339325

    Google Scholar 

  • Ono E, Cuello JL (2007) Carbon dioxide mitigation using thermophilic cyanobacteria. Biosys Eng 96:129–134. doi:10.1016/j.biosystemseng.2006.09.010

    Google Scholar 

  • Op den Camp HJM, Islam T, Sttot MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland NK, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306. doi:10.1111/j.1758-2229.2009.00022.x

    CAS  Google Scholar 

  • Ota M, Kato Y, Watanabe H, Watanabe M, Sato Y, Smith RLJ, Inomata H (2009) Effect of inorganic carbon on photoautotrophic growth of microalga Chlorococcum littorale. Biotechnol Prog 25:492–498. doi:10.1002/btpr.123

    CAS  Google Scholar 

  • Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for green house gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37:3428–3437. doi:10.1016/j.enpol.2008.12.025

    Google Scholar 

  • Park S, Lee CH, Ryu CR, Sung K (2009) Biofiltration for reducing methane emissions from modern sanitary landfills at the low methane generation stage. Water Air Soil Pollut 196:19–27. doi:10.1007/s11270-008-9754-4

    CAS  Google Scholar 

  • Patt TE, Hanson RS (1978) Intracytoplasmatic membrane, phospholipid, and sterol content of Methylobacterium organophilum cells grown under different conditions. J Bacteriol 134:636–644

    CAS  Google Scholar 

  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878. doi:10.1038/nature06222

    CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177. doi:10.1002/elsc.200900003

    CAS  Google Scholar 

  • Powelson DK, Chanton J, Abichou T, Morales J (2006) Methane oxidation in water-spreading and compost biofilters. Waste Manage Res 24:528–536. doi:10.1177/0734242X06065704

    CAS  Google Scholar 

  • Price GD, Badger MR (1989) Expression of human carbonic anhydrase in the cyanobacterium Synechococcus PCC 7942 creates a high CO2-requiring phenotype. Evidence for a central role for carboxysomes in the CO2 concentrating mechanism. Plant Physiol 91:505–513

    CAS  Google Scholar 

  • Price GD, Coleman JR, Badger MR (1992) Association of carbonic anhydrase activity with carboxysomes isolated from cyanobacterium Synechococcus PCC 7942. Plant Physiol 100:784–793

    CAS  Google Scholar 

  • Pulz OP (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293. doi:10.1007/s002530100702

    CAS  Google Scholar 

  • Quayle JR (1972) The metabolism of one-carbon compounds by micro-organisms. Adv Microbiol Physiol 7:119–203. doi:10.1016/S0065-2911(08)60078-8

    CAS  Google Scholar 

  • Quijano G, Hernández M, Thalasso F, Muñoz R, Villaverde S (2009) Two-phase partitioning bioreactors in environmental biotechnology. Appl Microbiol Biotechnol 84:829–846. doi:10.1007/s00253-009-2158-6

    CAS  Google Scholar 

  • Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88. doi:10.1080/10408410802086783

    CAS  Google Scholar 

  • Rassamee V, Sattayatewa C, Pagilla K, Chandran K (2011) Effect of oxic and anoxic conditions on nitrous oxide emissions from nitrification and denitrification. Biotechnol Bioeng 108:2036–2045. doi:10.1002/bit.23147

    CAS  Google Scholar 

  • Raven JA, Cockell CS, De la Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil Trans R Soc B 363:2641–2650. doi:10.1098/rstb.2008.0020

    CAS  Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125. doi:10.1126/science.1176985

    CAS  Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513. doi:10.1021/cr050362v

    CAS  Google Scholar 

  • Remsen CC, Minnich EC, Stephens RS, Buchholz L, Lidstrom ME (1989) Methane oxidation in Lake Superior sediments. J Great Lakes Res 5:141–196. doi:10.1016/S0380-1330(89)71468-4

    Google Scholar 

  • Richmond A (1986) Microalgae of economic potential. In: Richmond A (ed) Handbook of microalgal mass culture. CRC, Boca Raton, pp 200–202

    Google Scholar 

  • Richmond A (1990) Large scale microalgal culture and applications. In: Round FE, Chapman DJ (eds) Progress in phycological research, vol. 7. Biopress Ltd., Bristol, pp 239–320

    Google Scholar 

  • Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd., Oxford, pp 125–177

    Google Scholar 

  • Robertson LA, Dalsgaard T, Revsbech NP, Hadioetomo R, Kuenen JG (1995) Confirmation of ‘aerobic denitrification’ in batch cultures, using gas chromatography and 15N mass spectrometry. FEMS Microbiol Ecol 18:113–120. doi:10.1111/j.1574-6941.1995.tb00168.x

    CAS  Google Scholar 

  • Roch F, Alexander M (1997) Inability of bacteria to degrade low concentrations of toluene in water. Environ Technol Chem 16:1377–1383. doi:10.1002/etc.5620160707

    CAS  Google Scholar 

  • Rocha-Rios J, Bordel S, Hernández S, Revah S (2009) Methane degradation in two-phase partition bioreactors. Chem Eng J 152:289–292. doi:10.1016/j.cej.2009.04.028

    CAS  Google Scholar 

  • Rocha-Rios J, Quijano G, Thalasso F, Revah S, Muñoz R (2011) Methane biodegradation in a two-phase partition internal loop airlift reactor with gas recirculation. J Chem Technol Biotechnol 86:353–360. doi:10.1002/jctb.2523

    CAS  Google Scholar 

  • Sakurai N, Sakurai T (1997) Isolation and characterization of nitric oxide reductase from Paracoccus halodenitrificans. Biochem 36:13809–13815. doi:10.1021/bi971070u

    CAS  Google Scholar 

  • Sánchez Fernández JF, González López CV, Acién Fernández FG, Fernández Sevilla JM, Molina Grima E (2012) Utilization of Anabaena sp. in CO2 removal processes. Modelling of biomass, exopolysaccharides productivities and CO2 fixation rate. Appl Microbiol Biotechnol 94:613–624. doi:10.1007/s00253-011-3683-7

    Google Scholar 

  • Sánchez Mirón A, Contreras Gómez A, García Camacho F, Molina Grima E, Chisti Y (1999) Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J Biotechnol 70:249–270. doi:10.1016/S0168-1656(99)00079-6

    Google Scholar 

  • Sato T, Usui S, Tsuchiya Y, Kondo Y (2006) Invention of outdoor closed type photobioreactor for microalgae. Energy Convers Manage 47:791–799. doi:10.1016/j.enconman.2005.06.010

    CAS  Google Scholar 

  • Satsuma A, Maeshima H, Watanabe K, Suzuki K, Hattori T (2000) Effects of methane and oxygen on decomposition of nitrous oxide over metal oxide catalysts. Catal Today 63:347–353. doi:10.1016/S0920-5861(00)00478-8

    CAS  Google Scholar 

  • Savir Y, Noor E, Milo R, Tlusty T (2010) Cross species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. PNAS 107:3475–3480. doi:10.1073/pnas.0911663107

    CAS  Google Scholar 

  • Scheutz C, Kjeldsen P, Bogner JA, De Visscher A, Gebert J, Hilger HA, Huber-Humer M, Spokas K (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manage Res 27:409–455. doi:10.1177/0734242X09339325

    CAS  Google Scholar 

  • Scott D, Brannan J, Higgins IJ (1981) The effect of growth conditions on intracytoplasmic membranes and methane monooxygenase activities in Methylosinus trichosporium OB3b. J Gen Microbiol 125:63–72. doi:10.1099/00221287-125-1-63

    CAS  Google Scholar 

  • Seckbach J, Ikan R (1972) Sterols and chloroplast structure of Cyanidium caldarium. Plant Physiol 49:457–459

    CAS  Google Scholar 

  • Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300. doi:10.1111/j.1574-6968.1999.tb13386.x

    CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and cooper. FEMS Microbiol Rev 34:496–531. doi:10.1111/j.1574-6976.2010.00212.x

    CAS  Google Scholar 

  • Semrau JD (2011) Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol 2:209. doi:10.3389/fmicb.2011.00209

    Google Scholar 

  • Shanmugasundram R, Lee CM, Sublette KL (1993) Reduction of nitric oxide by denitrifying bacteria. Appl Biochem Biotechnol 39–40:727–737. doi:10.1007/BF02919031

    Google Scholar 

  • Shimizu A, Tanaka K, Fujimori M (2000) Abatement technologies for N2O emissions in the adipic acid industry. Chemosphere Glob Chang Sci 2:425–434

    CAS  Google Scholar 

  • Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production—a review. Renew Sust Energ Rev 16:2347–2353. doi:10.1016/j.rser.2012.01.026

    CAS  Google Scholar 

  • Skalska K, Miller JS, Ledakowicz S (2010) Trends in NO x abatement: a review. Sci Total Environ 408:3976–3989. doi:10.1016/j.scitotenv.2010.06.001

    CAS  Google Scholar 

  • Sobczuk TM, García F, Camacho F, Acién FG, Molina E (2000) Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol Bioeng 67:465–475. doi:10.1002/(SICI)1097-0290(20000220)67:4<465::AID-BIT10>3.0.CO;2-9

    CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. doi:10.1263/jbb.101.87

    CAS  Google Scholar 

  • Staehelin A (1986) Chloroplast structure and supramolecular organization of photosynthetic membranes. In: Staehelin LA, Arntzen CA (eds) Photosynthesis III. Photosynthetic membranes and light-harvesting systems, vol 19. Springer, New York, pp 1–84

    Google Scholar 

  • Stanley SH, Prior SD, Leak D, Dalton H (1983) Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol Lett 5:487–492. doi:10.1007/BF00132233

    CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Tallec G, Garnier J, Billen G, Gousailles M (2008) Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation. Biores Technol 99:2200–2209. doi:10.1016/j.biortech.2007.05.025

    CAS  Google Scholar 

  • Tamiya H (1957) Mass culture of algae. Ann Rev Plant Physiol 8:309–334. doi:annurev.pp.08.060157.001521/annurev.pp.08.060157.001521

    CAS  Google Scholar 

  • Thalasso F, Vallecillo A, García-Encina P, Fdz-Polanco F (1997) The use of methane as sole carbon source for wastewater denitrification. Water Res 31:55–60. doi:10.1016/S0043-1354(96)00228-X

    CAS  Google Scholar 

  • Toledo-Cervantes A, Morales M, Novelo E, Revah S (2013) Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Bioresour Technol. doi:10.1016/j.biortech.2012.12.081

  • Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197. doi:10.1002/(SICI)1097-0290(19980120)57:2<187::AID-BIT7>3.0.CO;2-J

    CAS  Google Scholar 

  • Tredici MR (2009) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162. doi:10.4155/bfs.09.10

    Google Scholar 

  • Treude T, Ziebis W (2010) Methane oxidation in permeable sediments at hydrocarbon seeps in the Santa Barbara Channel, California. Biogeosci Discuss 7:1905–1933. doi:10.5194/bg-7-3095-2010

    Google Scholar 

  • Tsubota J, Eshinimaev BT, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen. nov., sp. nov., a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55:1877–1884. doi:10.1099/ijs.0.63691-0

    CAS  Google Scholar 

  • Uggetti E, García J, Lind SE, Martikainen PJ, Ferrer I (2012) Quantification of greenhouse gas emissions from sludge treatment wetlands. Water Res 46:1755–1762. doi:10.1016/j.watres.2011.12.049

    CAS  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Biores Technol 99:4021–4028. doi:10.1016/j.biortech.2007.01.046

    CAS  Google Scholar 

  • Utami TS, Hermansyah H, Nasikin M (2012) Biofiltration of nitrous oxide using cow-manure based compost as medium filter. J Environ Prot 3:584–588. doi:jep.2012.37070/jep.2012.37070

    Google Scholar 

  • Veillette M, Girard M, Viens P, Brzezinski R, Heitz M (2012) Function and limits of biofilters for the removal of methane in exhaust gases from the pig industry. Appl Microbiol Biotechnol 94:601–611. doi:10.1007/s00253-012-3998-z

    CAS  Google Scholar 

  • Viskari PJ, Colyer CL (2003) Rapid extraction of phycobiliproteins from cultured cyanobacteria samples. Anal Biochem 319:263–271. doi:10.1016/S0003-2697(03)00294-X

    CAS  Google Scholar 

  • Wallar BJ, Lipscomb JD (2001) Methane monooxygenase component B mutants alter the kinetics of steps throughout the catalytic cycle. Biochem 40:2220–2233. doi:10.1021/bi002298b

    CAS  Google Scholar 

  • Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718. doi:10.1007/s00253-008-1518-y

    CAS  Google Scholar 

  • Whalen SC, Reeburgh WS, Sandbeck KA (1990) Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol 56:3405–3411

    CAS  Google Scholar 

  • Whalen SC, Reeburgh WS (1996) Moisture and temperature sensitivity of CH4 oxidation in boreal soils. Soil Biol Biochem 28:1271–1278. doi:10.1016/S0038-0717(96)00139-3

    CAS  Google Scholar 

  • Whittenbury R (1981) The interrelationship of autotrophy and methylotrophy as seen in Methylococcus capsulatus (Bath). In: Dalton H (ed) Microbial growth on C1 compounds. Heyden, London, pp 181–190

    Google Scholar 

  • Whittenbury R, Dalton H (1981) The methylotrophic bacteria. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The procaryotes, a handbook on habits, isolation, and identification of bacteria, vol I. Springer, New York, pp 894–902

    Google Scholar 

  • Wilshusen JH, Hettiaratchi JPA, De Visscher A, Saint-Fort R (2004) Methane oxidation and formation of EPS in compost: effect of oxygen concentration. Environ Pollut 129:305–314. doi:10.1016/j.envpol.2003.10.015

    CAS  Google Scholar 

  • Winder R (2004) Methane to biomass. J Soc Chem Ind Lond 17:19

    Google Scholar 

  • Woertz JR, Kinney KA, Szaniszlo PJ (2001) A fungal vapor phase bioreactor for the removal of nitric oxide from waste gas streams. J Air Waste Manage Assoc 51:895–902. doi:10.1080/10473289.2001.10464321

    CAS  Google Scholar 

  • Wolf HJ, Hanson RS (1979) Isolation and characterization of methane-utilizing yeasts. J Gen Microbiol 114:187–194

    Google Scholar 

  • Wood PM (1986) Nitrification as a bacterial energy source. In: Prosser JI (ed) Nitrification. Spec Publ Soc Gen Microbiol 20:39–62

  • Wrage N, Velthof GL, van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732. doi:10.1016/S0038-0717(01)00096-7

    CAS  Google Scholar 

  • Wu ML, Ettwig KF, Jetten MS, Strous M, Keltjens JT, van Niftrik L (2011) A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochem Soc Trans 39:243–248. doi:10.1042/BST0390243

    CAS  Google Scholar 

  • Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H (2012) Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res 46:1027–1037. doi:10.1016/j.watres.2011.11.080

    CAS  Google Scholar 

  • Xu X, Xu H, Kapteijn F, Moulijn JA (2004) SBA-15 based catalysts in catalytic N2O decomposition in a model tail-gas from nitric acid plants. Appl Catal B 53:265–274. doi:10.1016/j.apcatb.2004.04.023

    CAS  Google Scholar 

  • Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9:178–189. doi:10.1002/elsc.200800111

    CAS  Google Scholar 

  • Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels of carbon dioxide. Bioresour Technol 101:71–74. doi:10.1016/j.biortech.2009.03.030

    Google Scholar 

  • Yoon S, Carey JN, Semrau JD (2009) Feasibility of atmospheric methane removal using methanotrophic biotrickling filters. Appl Microbiol Biotechnol 83:949–956. doi:10.1007/s00253-009-1977-9

    CAS  Google Scholar 

  • Yoon S, Kraemer SM, DiSpirito AA, Semrau JD (2010) An assay for screening microbial cultures for chalkophore production. Environ Microbiol Rep 2:295–303. doi:10.1111/J.1758-2229.2009.00125.x

    CAS  Google Scholar 

  • Yoshihara K, Nagase H, Eguchi K, Hirata K, Miyamoto K (1996) Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivation in a long tubular photobioreactor. J Ferment Bioeng 82:351–354. doi:10.1016/0922-338X(96)89149-5

    CAS  Google Scholar 

  • Zamorano M, Pérez Pérez JI, Pavés IA, Ridao AR (2007) Study of the energy potential of the biogas produced by an urban waste landfill in Southern Spain. Renew Sust Energ Rev 11:909–922. doi:10.1016/j.rser.2005.05.007

    CAS  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159. doi:10.1016/j.copbio.2008.02.004

    CAS  Google Scholar 

  • Zou N, Zhang CW, Cohen Z, Richmond A (2000) Production of cell mass and eicosapentaenoic acid (EPA) in ultrahigh cell density cultures of Nannochloropsis sp (Eustigmatophyceae). Eur J Phycol 35:127–133. doi:10.1080/09670260010001735711

    Google Scholar 

  • Zúñiga C, Morales M, Le Borgne S, Revah S (2011) Production of poly-hydroxybutyrate (PHB) by Methylobacterium organophilum isolated from a methanotrophic consortium in a two-phase partition bioreactor. J Hazard Mater 190:876–882. doi:10.1016/j.jhazmat.2011.04.011

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Spanish Ministry of Economy and Competitiveness (RYC-2007-01667, JCI-2011-11009, and BES-2010-030994 contracts; CTQ2012-34949 and CONSOLIDER-CSD 2007-00055 projects). The Regional Government of Castilla y León is gratefully acknowledged (VA004A11-2 and GR76). The contributions of Esther Posadas (University of Valladolid) and Antonio Encina (University of León) during manuscript preparation are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Muñoz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, J.C., Quijano, G., Souza, T.S.O. et al. Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges. Appl Microbiol Biotechnol 97, 2277–2303 (2013). https://doi.org/10.1007/s00253-013-4734-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4734-z

Keywords

Navigation