Skip to main content
Log in

Survey of Plant Drought-Resistance Promoting Bacteria from Populus euphratica Tree Living in Arid Area

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Two hundred and thirty-two bacterial strains were isolated from the rhizospheric soil of Populus euphratica which is the dominant tree living in extreme arid regions in northwest China. Some strains with plant growth-promoting bacteria related metabolic characteristics were able to promote drought resistance in plants after inoculation. Ten strains with the greatest effects increased the dry weight of wheat shoots from 0.5 to 34.4 %, and the surface area of the root systems from 12.56 to 212.17 % compared to the control after drought treatment whereas no obvious promoting effect was observed in normal water conditions. These 10 strains were identified to be of the genera Pseudomonas, Bacillus, Stenotrophomonas and Serratia by 16S rRNA (rrs) gene sequence alignment. Among these strains, Serratia sp. 1-9 and Pseudomonas sp. 5-23 were the two most effective strains. Both of them produced auxin and the production increased significantly when cultured under simulated drought conditions which are inferred to be the most plausible mechanism for their plant growth-promoting effect under drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carmen B, Roberto D (2011) Soil bacteria support and protect plants against abiotic stresses. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants-mechanisms and adaptations. InTech, Rijeka. doi:10.5772/23310

    Google Scholar 

  2. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. doi:10.1016/j.tplants.2008.10.004

    Article  PubMed  CAS  Google Scholar 

  3. Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694. doi:10.1111/j.1365-3040.2009.02028.x

    Article  PubMed  CAS  Google Scholar 

  4. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. doi:10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  5. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932. doi:10.1073/pnas.0730845100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93. doi:10.1023/A:1020663916259

    Article  CAS  Google Scholar 

  7. Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3 and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248. doi:10.1078/0944-5013-00197

    Article  PubMed  CAS  Google Scholar 

  8. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15. doi:10.6064/2012/963401

    Article  Google Scholar 

  9. Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR (2007) Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil 292:305–315. doi:10.1007/s11104-007-9233-5

    Article  CAS  Google Scholar 

  10. Joo GJ, Kim YM, Kim JT, Rhee IK, Kim JH, Lee IJ (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515

    PubMed  CAS  Google Scholar 

  11. Figueiredo VB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188. doi:10.1016/j.apsoil.2008.04.005

    Article  Google Scholar 

  12. Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronoval VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423. doi:10.1111/j.1469-8137.2008.02657.x

    Article  PubMed  CAS  Google Scholar 

  13. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530. doi:10.1016/j.plantsci.2003.10.025

    Article  CAS  Google Scholar 

  14. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250. doi:10.1016/j.soilbio.2004.07.033

    Article  CAS  Google Scholar 

  15. Gordon SA, Weber RP (1951) Colorimetric estimation of indole acetic acid. Plant Physiol 26:192–195. doi:10.1104/pp.26.1.192

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Barritt MM (1936) The intensification of the Voges–Proskauer reaction by the addition of α-naphthol. J Pathol Bacteriol 42:44–54. doi:10.1002/path.1700420212

    Article  Google Scholar 

  17. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. doi:10.1016/0003-2697(87)90612-9

    Article  PubMed  CAS  Google Scholar 

  18. Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395. doi:10.1016/0038-0717(92)90199-8

    Article  Google Scholar 

  19. Arciola CR, Collamati S, Donati E, Montanaro L (2001) A rapid PCR method for the detection of slime-producing strains of Staphylococcus epidermidis and S. aureus in periprosthesis infections. Diagn Mol Pathol 10:130–137. doi:10.1097/00019606-200106000-00010

    Article  PubMed  CAS  Google Scholar 

  20. Marulanda A, Barea JM, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124. doi:10.1007/s00344-009-9079-6

    Article  CAS  Google Scholar 

  21. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligene seutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Chakraborty U, Chakraborty B, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic Microb 46:186–195. doi:10.1002/jobm.200510050

    Article  CAS  Google Scholar 

  24. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757. doi:10.1128/AEM.02239-08

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirilum sp. under drought stress. World J Microbiol Biotechnol 27:197–205. doi:10.1007/s11274-010-0444-1

    Article  CAS  Google Scholar 

  26. Burd GI, Dixon DG, Glick BR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245. doi:10.1139/w99-143

    Article  PubMed  CAS  Google Scholar 

  27. Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381. doi:10.1007/s00253-009-2116-3

    Article  PubMed  CAS  Google Scholar 

  28. Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630. doi:10.1111/j.1399-3054.1997.tb03068.x

    Article  CAS  Google Scholar 

  29. Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Gulaim S, Stenstrom E, Niinements U (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE 9:e96086. doi:10.1371/journal.pone.0096086

    Article  PubMed  PubMed Central  Google Scholar 

  30. Marasco R, Rolli E, Vigani G, Borin S, Sorlini C, Ouzari H, Zocchi G, Daffonchio D (2013) Are drought-resistance promoting bacteria cross-compatible with different plant models? Plant Signal Behav 8:e26741. doi:10.4161/psb.26741

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the opening project of Xinjiang Production & Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin (No. BRZD1203). Great thanks to Dr. Jon Catterall for his careful suggestions on grammar and data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Ouyang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Ouyang, L., Ju, X. et al. Survey of Plant Drought-Resistance Promoting Bacteria from Populus euphratica Tree Living in Arid Area. Indian J Microbiol 54, 419–426 (2014). https://doi.org/10.1007/s12088-014-0479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-014-0479-3

Keywords

Navigation