Skip to main content
Log in

Technicalities and Glitches of Terminal Restriction Fragment Length Polymorphism (T-RFLP)

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Terminal restriction fragment length polymorphism (T-RFLP) is a rapid, robust, inexpensive and simple tool for microbial community profiling. Methods used for DNA extraction, PCR amplification and digestion of amplified products have a considerable impact on the results of T-RFLP. Pitfalls of the method skew the similarity analysis and compromise its high throughput ability. Despite a high throughput method of data generation, data analysis is still in its infancy and needs more attention. Current article highlights the limitations of the methods used for data generation and analysis. It also provides an overview of the recent methodological developments in T-RFLP which will assist the readers in obtaining real and authentic profiles of the microbial communities under consideration while eluding the inherent biases and technical difficulties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Liu W, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphism of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Penny C, Nadalig T, Alioua M, Gruffaz C, Vuilleumier S, Bringel F (2010) Coupling of denaturing high-performance liquid chromatography and terminal restriction fragment length polymorphism with precise fragment sizing for microbial community profiling and characterization. Appl Environ Microbiol 76:648–651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single strand confirmation polymorphism for 16S rRNA gene based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Avis PG, Dickie IA, Mueller GM (2006) A ‘dirty’ business: testing the limitation of terminal restriction fragment length polymorphism (T-RFLP) analysis of soil fungi. Mol Ecol 15:873–882

    Article  CAS  PubMed  Google Scholar 

  6. Canion A, Prakash O, Green S, Jahnke L, Kuypers M, Kostka JE (2013) Isolation and physiological characterization of psychrophilic denitrifying bacteria from permanently cold Arctic fjord sediments (Svalbard, Norway). Environ Microbiol 15:1606–1618

    Article  CAS  PubMed  Google Scholar 

  7. Dadhwal M, Singh A, Prakash O, Gupta SK, Kumari K, Sharma P, Jit S, Verma M, Holliger C, Lal R (2009) Proposal of biostimulation for hexachlorocyclohexane (HCH)-decontamination and characterization of culturable bacterial community from high-dose point HCH-contaminated soils. J Appl Microbiol 106:381–392

    Article  CAS  PubMed  Google Scholar 

  8. Dunbar J, Ticknor LO, Kuske CR (2001) Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl Environ Microbiol 67:190–197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Elliott GN, Thomas N, Macrae M, Campbell CD, Ogden ID, Singh BK (2012) Multiplex T-RFLP allows for increased target number and specificity: detection of Salmonella enterica and six species of Listeria in a single test. PLoS ONE 7:e43672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Euringer K, Lueders T (2008) An optimised PCR/T-RFLP fingerprinting approach for the investigation of protistan communities in groundwater environments. J Microbiol Methods 75:262–268

    Article  CAS  PubMed  Google Scholar 

  11. Green SJ, Prakash O, Jasrotia P, Overholt WA, Cardenas E, Hubbard D, Tiedje JM, Watson DB, Jardine PM, Brooks SC, Kostka JE (2012) Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site. Appl Environ Microbiol 78:1039–1047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Raina V, Suar M, Singh A, Prakash O, Dadhwal M, Gupta SK, Lal R (2008) Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soil via inoculation of Sphingobium indicum B90A. Biodegradation 19:27–40

    Article  CAS  PubMed  Google Scholar 

  13. Wawrik B, Kerkhof L, Kukor J, Zylstra G (2005) Effect of different carbon sources on community composition of bacterial enrichments from soil. Appl Environ Microbiol 71:6773–6783

    Google Scholar 

  14. Widmer F, Hartmann M, Frey B, Kölliker R (2006) A novel strategy to extract specific phylogenetic sequence information from community T-RFLP. J Microbiol Methods 66:512–520

    Article  CAS  PubMed  Google Scholar 

  15. Bruce KD (1997) Analysis of mer gene subclass within bacterial communities in soil and sediments resolved by fluorescent-PCR restriction fragment length polymorphism profiling. Appl Environ Microbiol 63:4914–4919

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Horz H, Rotthauwe J, Lukow T, Liesack W (2000) Identification of major subgroups of ammonia oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. J Microbiol Methods 39:197–204

    Article  CAS  PubMed  Google Scholar 

  17. Rösch C, Bothe H (2005) Improved assessment of denitrifying, N2-fixing, and total community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl Environ Microbiol 71:2026–2035

    Article  PubMed Central  PubMed  Google Scholar 

  18. Schütte UME, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80:365–380

    Article  PubMed  Google Scholar 

  19. Fatima F, Chaudhary I, Ali J, Rastogi S, Pathak N (2011) Microbial DNA extraction from soil by different methods and its PCR amplification. Biochem Cell Arch 11:2

    Google Scholar 

  20. Feinstein LM, Sul WJ, Blackwood CB (2009) Assessment of bias associated with incomplete extraction of microbial DNA from soil. Appl Environ Microbiol 75:5428–5433

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Frostegard A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 66:4237–4246

    Google Scholar 

  22. Gabor EM, de Vries EJ, Janssen DB (2003) Efficient recovery of environmental DNA for expression cloning by indirect extraction method. FEMS Microbiol Ecol 44:153–163

    Article  CAS  PubMed  Google Scholar 

  23. İnceoglu O, Hoogwout EF, Hill P, van Elsas JD (2010) Effect of DNA extraction method on the apparent microbial diversity of soil. Appl Environ Microbiol 76:3378–3382

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kitts CL (2001) Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr Issues Intest Microbiol 2:17–25

    CAS  PubMed  Google Scholar 

  25. Willner D, Daly J, Whiley D, Grimwood K, Wainwright CE, Hugenholtz P (2012) Comparison of DNA extraction methods for microbial community profiling with an application to pediatric bronchoalveolar lavage samples. PLoS ONE 7:e34605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. LaMontagne MG, Michel FC Jr, Holden PA, Reddy CA (2002) Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. J Microbiol Methods 49:255–264

    Article  CAS  PubMed  Google Scholar 

  27. Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis method. Appl Environ Microbiol 67:2354–2359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Qiu X, Wu L, Huang H, McDonel PE, Palumbo AV, Tiedje JM, Zhou J (2001) Evaluation of PCR generated chimeras, mutation and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol 67:880–887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Polz MF, Cavanaugh CM (1998) Bias in template to product ratios in multitemplate PCR. Appl Environ Microbiol 64:3723–3730

    Google Scholar 

  30. Osborn AM, Moore ERB, Timmis KN (1999) An evaluation of terminal restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50

    Article  Google Scholar 

  31. Fortuna AM, Marsh TL, Honeycutt CW, Halteman WA (2011) Use of primer selection and restriction enzymes to assess bacterial community diversity in an agricultural soil used for potato production via terminal restriction fragment length polymorphism. Appl Microbiol Biotechnol 91:1193–1202

    Article  CAS  PubMed  Google Scholar 

  32. Nakano Y, Takeshita T, Yamashita Y (2006) TRFMA: a web-based tool for terminal restriction fragment length polymorphism analysis based on molecular weight. Bioinformatics 22:1788–1789

    Article  CAS  PubMed  Google Scholar 

  33. Pandey J, Ganesan K, Jain RK (2007) Variations in T-RFLP profiles with differing chemistries of fluorescent dyes used for labeling the PCR primers. J Microbiol Methods 68:633–638

    Article  CAS  PubMed  Google Scholar 

  34. Hewson I, Fuhrman JA (2006) Improved strategy for comparing microbial assemblage fingerprints. Microb Ecol 51:147–153

    Article  PubMed  Google Scholar 

  35. Li F, Hullar MA, Lampe JW (2007) Optimization of terminal restriction fragment polymorphism (TRFLP) analysis of human gut microbiota. J Microbiol Methods 68:303–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  37. Abdo Z, Schüette UME, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical method for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphism of 16S rRNA genes. Environ Microbiol 8:929–938

    Article  PubMed  Google Scholar 

  38. Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH (2009) T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinformatics 10:171

    Article  PubMed Central  PubMed  Google Scholar 

  39. Grant A, Ogilvie LA (2003) Terminal restriction fragment length polymorphism data analysis. Appl Environ Microbiol 69:6342–6343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Culman SW, Gauch HG, Blackwood CB, Thies JE (2008) Analysis of T-RFLP data using analysis of variance and ordination methods: a comparative study. J Microbiol Methods 75:55–63

    Article  CAS  PubMed  Google Scholar 

  41. Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  42. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Smith CJ, Danilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG (2005) T-Align, a web based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol Ecol 54:375–383

    Article  CAS  PubMed  Google Scholar 

  44. Blackwood CB, Marsh T, Sang-Hoon K, Paul EA (2003) Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl Environ Microbiol 69:926–932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Ricke P, Kolb S, Braker G (2005) Application of newly developed ARB software- integrated tool for in silico terminal restriction fragment length polymorphism analysis reveals the dominance of a novel pmoA cluster in forest soil. Appl Environ Microbiol 71:1671–1673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Weissbrodt DG, Shani N, Sinclair L, Lefebvre G, Rossi P, Maillard J, Rougemont J, Holliger C (2012) PyroTRF-ID: a novel bioinformatics methodology for the affiliation of terminal-restriction fragments using 16S rRNA gene pyrosequencing data. BMC Microbiol 12:306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kent AD, Smith DJ, Benson BJ, Triplett EW (2003) Web based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl Environ Microbiol 69:6768–6773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Junier P, Junier T, Witzel KP (2008) TRiFLe, a program for in silico terminal restriction fragment length polymorphism analysis with user-defined sequence sets. Appl Environ Microbiol 74:6452–6456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Stres B, Tiedje JM, Murovec B (2009) BEsTRF: a tool for optimal resolution of terminal-restriction fragment length polymorphism (T-RFLP) analysis based on user defined primer-enzyme-sequence databases. Bioinformatics 25:1556–1558

    Article  CAS  PubMed  Google Scholar 

  50. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis in microbial ecology. Antonie van Leeuwenhock 73:127–141

    Article  CAS  Google Scholar 

  51. Lou DI, Hussmann JA, McBee RM, Acevedo A, Andino R, Press WH, Sawyer SL (2013) High-throughput DNA sequencing errors are reduced by orders of magnitude using circle sequencing. Proc Nat Acad Sci USA 110:19872–19877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Kalia VC, Mukherjee T, Bhushan A, Joshi J, Shankar P, Huma N (2011) Analysis of the unexplored features of rrs (16S rDNA) of the genus Clostridium. BMC Genom 12:18

    Article  CAS  Google Scholar 

  53. Porwal S, Lal S, Cheema S, Kalia VC (2009) Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS ONE 4:e4438

    Article  PubMed Central  PubMed  Google Scholar 

  54. Bhushan A, Joshi J, Shankar P, Kushwah J, Raju SC, Purohit HJ, Kalia VC (2013) Development of genomic tools for the identification of certain Pseudomonas up to species level. Ind J Microbiol 53:253–263

    Article  Google Scholar 

  55. Lewis ZT, Bokulich NA, Kalanetra KM, Ruiz-Moyano S, Underwood MA, Mills DA (2013) Use of bifidobacterial specific terminal restriction fragment length polymorphisms to complement next generation sequence profiling of infant gut communities. Anaerobe 19:62–69

    Article  CAS  PubMed  Google Scholar 

  56. Luna GM, Dell’Anno A, Danovaro R (2006) DNA extraction procedure: a critical issue for bacterial diversity assessment in marine sediments. Environ Microbiol 8:308–320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Biotechnology (DBT), Government of India for supporting this work by grant BT/PR10054/NDB/52/94/2007. The review benefited from valuable inputs and comments from Prof. Andrew Ogram, Soil and Water Science Department, University of Florida, USA, and Somak Chowdhury and Shreyas Kumbhare from National Centre for Cell Science, Pune, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Prakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, O., Pandey, P.K., Kulkarni, G.J. et al. Technicalities and Glitches of Terminal Restriction Fragment Length Polymorphism (T-RFLP). Indian J Microbiol 54, 255–261 (2014). https://doi.org/10.1007/s12088-014-0461-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-014-0461-0

Keywords

Navigation