Skip to main content

Microbial Community Profiling: SSCP and T-RFLP Techniques

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Single-strand conformation polymorphism (SSCP) and terminal restriction fragment length polymorphism (T-RFLP) are two independent methods for fingerprinting/profiling the diversity of microbial communities by distinction of similar-sized DNA fragments, amplified from directly extracted environmental DNA with PCR primers, hybridizing to phylogenetically conserved regions of microbial genomes. Since their introduction to microbial ecology, both methods were mainly used to characterize microbial communities based on their rRNA genes and/or ITS (internal transcribed spacer) genomic regions. However, they can also be applied for profiling functional, i.e., protein-encoding genes. For efficient use of SSCP, one strand of the double-stranded DNA-PCR amplicon is enzymatically removed to avoid reannealing during electrophoresis. While SSCP requires tightly temperature-controlled electrophoresis conditions, T-RFLP can best be performed with automated capillary electrophoresis where terminal restriction fragments, previously labeled with a fluorescent dye, are detected as electropherograms. SSCP is typically conducted on rectangular thin gels, which limits the amounts of directly comparable samples but allows the isolation of DNA for further sequencing and identification. As an advantage, T-RFLP allows an unlimited number of samples to be compared. Both methods only capture the most dominant community members as selected by their PCR primers, and their future use in microbial ecology is now challenged by massively parallel high-throughput DNA amplicon sequencing. However, SSCP and T-RFLP remain highly useful tools for coping with the common challenge in ecological studies of distinguishing the background of natural variability from treatment or other effects and, thus, instructing on which samples to be studied by high-throughput DNA sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  CAS  PubMed  Google Scholar 

  2. Hayashi K (1991) PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl 1:34–38

    Article  CAS  PubMed  Google Scholar 

  3. Lee DH, Zo YG, Kim SJ (1996) Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Appl Environ Microbiol 62:3112–3120

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dohrmann AB, Tebbe CC (2005) Effect of elevated tropospheric ozone on the structure of bacterial communities inhabiting the rhizosphere of herbaceous plants native to Germany. Appl Environ Microbiol 71:7750–7758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dowideit K, Scholz-Muramatsu H, Miethling-Graff R et al (2010) Spatial heterogeneity of dechlorinating bacteria and limiting factors for in situ trichloroethene dechlorination revealed by analyses of sediment cores from a polluted field site. FEMS Microbiol Ecol 71:444–459

    Article  CAS  PubMed  Google Scholar 

  7. Peters S, Koschinsky S, Schwieger F, Tebbe CC (2000) Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Appl Environ Microbiol 66:930–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alfreider A, Peters S, Tebbe CC, Rangger A, Insam H (2002) Microbial community dynamics during composting of organic matter as determined by 16S ribosomal DNA analysis. Compost Sci Util 10:303–312

    Article  Google Scholar 

  9. Korthals M, Ege MJ, Tebbe CC, von Mutius E, Bauer J (2008) Application of PCR-SSCP for molecular epidemiological studies on the exposure of farm children to bacteria in environmental dust. J Microbiol Methods 73:49–56

    Article  CAS  PubMed  Google Scholar 

  10. Grube M, Cardinale M, De Castro JV Jr, Mueller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. ISME J 3:1105–1115

    Article  PubMed  Google Scholar 

  11. Boguhn J, Strobel E, Witzig M, Tebbe CC, Rodehutscord M (2008) Description of the structural diversity of rumen microbial communities in vitro using single-strand conformation polymorphism profiles. Arch Anim Nutr 62:454–467

    Article  CAS  PubMed  Google Scholar 

  12. Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ Microbiol 8:258–272

    Article  CAS  PubMed  Google Scholar 

  13. Neumann D, Heuer A, Hemkemeyer M, Martens R, Tebbe CC (2013) Response of microbial communities to long-term fertilization depends on their microhabitat. FEMS Microbiol Ecol 86:71–84

    Article  CAS  PubMed  Google Scholar 

  14. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Giebler J, Wick LY, Harms H, Chatzinotas A (2014) Evaluating T-RFLP protocols to sensitively analyze the genetic diversity and community changes of soil alkane degrading bacteria. Eur J Soil Biol 65:107–113

    Article  CAS  Google Scholar 

  16. Thies JE (2007) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71:579–591

    Article  CAS  Google Scholar 

  17. Dohrmann AB, Küting M, Jünemann S, Jaenicke S, Schluter A, Tebbe CC (2013) Importance of rare taxa for bacterial diversity in the rhizosphere of Bt- and conventional maize varieties. ISME J 7:37–49

    Article  CAS  PubMed  Google Scholar 

  18. Lynch MDJ, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229

    Article  CAS  PubMed  Google Scholar 

  19. Schmalenberger A, Tebbe CC (2003) Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies. Mol Ecol 12:251–261

    Article  CAS  PubMed  Google Scholar 

  20. Miethling R, Ahrends K, Tebbe CC (2003) Structural differences in the rhizosphere communities of legumes are not equally reflected in community-level physiological profiles. Soil Biol Biochem 35:1405–1410

    Article  CAS  Google Scholar 

  21. Baumgarte S, Tebbe CC (2005) Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Mol Ecol 14:2539–2551

    Article  CAS  PubMed  Google Scholar 

  22. Miethling-Graff R, Dockhorn S, Tebbe CC (2010) Release of the recombinant Cry3Bb1 protein of Bt maize MON88017 into field soil and detection of effects on the diversity of rhizosphere bacteria. Eur J Soil Biol 46:41–48

    Article  CAS  Google Scholar 

  23. Dohrmann AB, Baumert S, Klingebiel L, Weiland P, Tebbe CC (2011) Bacterial community structure in experimental methanogenic bioreactors and search for pathogenic clostridia as community members. Appl Microbiol Biotechnol 89:1991–2004

    Article  CAS  PubMed  Google Scholar 

  24. Pfeiffer S, Pastar M, Mitter B et al (2014) Improved group-specific primers based on the full SILVA 16S rRNA gene reference database. Environ Microbiol 16:2389–2407

    Article  CAS  PubMed  Google Scholar 

  25. Smalla K, Oros-Sichler M, Milling A et al (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: Do the different methods provide similar results? J Microbiol Methods 69:470–479

    Article  CAS  PubMed  Google Scholar 

  26. Tebbe CC, Schmalenberger A, Peters S, Schwieger F (2001) Single-strand conformation polymorphism (SSCP) for microbial community analysis. In: Rochelle PA (ed) Environmental molecular microbiology: protocols and applications. Horizon Scientific, Wymondham, pp 161–175

    Google Scholar 

  27. Dohrmann AT, Tebbe CC (2004) Microbial community analysis by PCR-single-strand conformation polymorphism (PCR-SSCP). In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans ADL, van Elsas JD (eds) Molecular microbial ecology manual. Kluwer Academic, Dordrecht, pp 809–838

    Google Scholar 

  28. Schmalenberger A, Tebbe CC (2014) Profiling the diversity of microbial communities with single-strand conformation polymorphism (SSCP). In: Paulsen IT, Holmes AJ (eds) Environmental microbiology. Humana Press, New York, pp 71–83

    Chapter  Google Scholar 

  29. Marsh TL (1999) Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 2:323–327

    Article  CAS  PubMed  Google Scholar 

  30. Marsh TL (2005) Culture-independent microbial community analysis with terminal restriction fragment length polymorphism. In: Leadbetter JR (ed) Environmental microbiology. Academic Press Inc., San Diego, CA, pp. 308–29

    Google Scholar 

  31. Schütte UME, Abdo Z, Bent SJ et al (2008) Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80:365–380

    Article  PubMed  Google Scholar 

  32. Aiken JT (2011) Terminal restriction fragment length polymorphism for soil microbial community fingerprinting. Soil Sci Soc Am J 75:102–111

    Article  CAS  Google Scholar 

  33. Neumann D, Heuer A, Hemkemeyer M, Martens R, Tebbe CC (2014) Importance of soil organic matter for the diversity of microorganisms involved in the degradation of organic pollutants. ISME J 8:1289–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmalenberger A, Schwieger F, Tebbe CC (2001) Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Appl Environ Microbiol 67:3557–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Castellanos T, Dohrmann AB, Imfeld G, Baumgarte S, Tebbe CC (2009) Search of environmental descriptors to explain the variability of the bacterial diversity from maize rhizospheres across a regional scale. Eur J Soil Biol 45:383–393

    Article  Google Scholar 

  36. Nübel U, Engelen B, Felske A et al (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    Google Scholar 

  37. Gomes NCM, Heuer H, Schönfeld J, Costa R, Mendonca-Hagler L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant and Soil 232:167–180

    Article  CAS  Google Scholar 

  38. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dohrmann AB, Tebbe CC (2006) Genetic profiling of bacterial communities from the rhizospheres of ozone damaged Malva sylvestris (Malvaceae). Eur J Soil Biol 42:191–199

    Article  CAS  Google Scholar 

  40. Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Milling A, Smalla K, Maidl FX, Schloter M, Munch JC (2004) Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant and Soil 266:23–39

    Article  CAS  Google Scholar 

  42. Le Bourhis AG, Saunier K, Dore J et al (2005) Development and validation of PCR primers to assess the diversity of Clostridium spp. In cheese by temporal temperature gradient gel electrophoresis. Appl Environ Microbiol 71:29–38

    Google Scholar 

  43. Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5: 28

    Google Scholar 

  44. Sambrook JRDW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  45. Kropf S, Heuer H, Grüning M, Smalla K (2004) Significance test for comparing complex microbial community fingerprints using pairwise similarity measures. J Microbiol Methods 57:187–195

    Article  CAS  PubMed  Google Scholar 

  46. R core team (2015) A language and environment for statistical computing. http://www.R-project.org

  47. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin, PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: Community ecology package. R package version 2.2-0. http://CRAN.R-project.org/package=vegan

  48. Shendure J, Mitra RD, Varma C, Church GM (2004) Advanced sequencing technologies: methods and goals. Nat Rev Genet 5:335–344

    Article  CAS  PubMed  Google Scholar 

  49. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  50. Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH (2009) T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinformatics 10

    Google Scholar 

  51. Kaplan CW, Kitts CL (2003) Variation between observed and true terminal restriction fragment length is dependent on true TRF length and purine content. J Microbiol Methods 54:121–125

    Article  CAS  PubMed  Google Scholar 

  52. Junca H, Pieper DH (2004) Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries. Environ Microbiol 6:95–110

    Article  CAS  PubMed  Google Scholar 

  53. Horz HP, Yimga MT, Liesack W (2001) Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. Appl Environ Microbiol 67:4177–4185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lueders T, Friedrich MW (2003) Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl Environ Microbiol 69:320–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bremer C, Braker G, Matthies D, Reuter A, Engels C, Conrad R (2007) Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil. Appl Environ Microbiol 73:6876–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Siripong S, Rittmann BE (2007) Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Res 41:1110–1120

    Article  CAS  PubMed  Google Scholar 

  57. Bragina A, Maier S, Berg C et al (2012) Similar diversity of alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses. Front Microbiol 3

    Google Scholar 

  58. Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soils in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59:2657–2665

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Vahjen W, Tebbe CC (1994) Enhanced detection of genetically-engineered Corynebacterium glutamicum pUN1 in directly extracted DNA from soil, using th T4 gene 32 protein in the polymerase chain reaction. Eur J Soil Biol 30:93–98

    CAS  Google Scholar 

  60. Ricke P, Kolb S, Braker G (2005) Application of a newly developed ARB software-integrated tool for in silico terminal restriction fragment length polymorphism analysis reveals the dominance of a novel pmoA cluster in a forest soil. Appl Environ Microbiol 71:1671–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Junier P, Junier T, Witzel K-P (2008) TRiFLe, a program for in silico terminal restriction fragment length polymorphism analysis with user-defined sequence sets. Appl Environ Microbiol 74:6452–6456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shyu C, Soule T, Bent SJ, Foster JA, Forney LJ (2007) MiCA: a web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microb Ecol 53:562–570

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Britta Müller, Karin Trescher and Jana Usarek for their helpful comments. We gratefully acknowledge the financial support for A.D. provided by the project “Towards safe applications of recycled water in agriculture,” funded by the Federal Office for Agriculture and Food, Bonn, Germany (project number 2813IL-01), for M.H. by the DFG (Grant number TE 383/3-2), and for A.N. by the FP7 EU-funded AMIGA project (“Assessing and Monitoring the Impacts of Genetically modified plants (GMPs) on Agro-ecosystems,” (project number 289706 – publication number 10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph C. Tebbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Tebbe, C.C., Dohrmann, A.B., Hemkemeyer, M., Näther, A. (2015). Microbial Community Profiling: SSCP and T-RFLP Techniques. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_158

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_158

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52776-4

  • Online ISBN: 978-3-662-52778-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics