Skip to main content

Advertisement

Log in

A Simple Method for the Efficient Isolation of Genomic DNA from Lactobacilli Isolated from Traditional Indian Fermented Milk (dahi)

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

A simple, inexpensive and effective genomic DNA isolation procedure for Lactobacillus isolates from traditional Indian fermented milk (dahi) is described. A total of 269 Lactobacillus isolates from fermented milk collected from four places in North and west India were tested for lysis by an initial weakening of the Gram positive cell wall with Ampicillin followed by Lysozyme treatment. The average genomic DNA yield was ~50 μg/ml log phase culture. Quality and repeatability of the method was found to be adequate for subsequent molecular applications. The quality of the genomic DNA isolated by this method was verified by restriction digestion and polymerase chain reaction (PCR). No inhibition was observed in subsequent PCR amplification and restriction digestion. The presented method is rapid, cheap and useful for routine DNA isolation from gram positive bacteria such as Lactobacillus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Holt JG et al (ed) (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore

  2. Niku-Paavola M-L, Laitila A, Mattila-Sandholm T, Haikara A (1999) New types of antimicrobial compounds produced by Lactobacillus plantarum. J Appl Microbiol 86:29–35

    Article  PubMed  CAS  Google Scholar 

  3. Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Purification and characterization of novel antifungal compounds from the Sourdough Lactobacillus plantarum Strain 21B. Appl Environ Microbiol 66:4084–4090

    Article  PubMed  CAS  Google Scholar 

  4. Vescovo M, Torriani S, Orsi C, Macchiarolo F, Scolari G (1996) Application of antimicrobial producing lactic acid bacteria to control pathogens in ready-to-use vegetables. J Appl Bacteriol 81:113–119

    PubMed  CAS  Google Scholar 

  5. Tomas MS, Claudia-Otero M, Ocana V, Elena Nader-Macias M (2004) Production of antimicrobial substances by lactic acid bacteria I: determination of hydrogen peroxide. Methods Mol Biol 268:337–346

    PubMed  CAS  Google Scholar 

  6. Dodds KL, Collins-Thompson DL (1985) Production of N2O and CO2 during the reduction of NO2 by Lactobacillus lactis TS4. Appl Environ Microbiol 50:1550–1552

    PubMed  CAS  Google Scholar 

  7. Bartowsky EJ, Henschke PA (2004) The ‘buttery’ attribute of wine-diacetyl-desirability, spoilage and beyond. Int J Food Microbiol 96:235–252

    Article  PubMed  CAS  Google Scholar 

  8. Rodriguez JM, Martinez MI, Horn N, Dodd HM (2003) Heterologous production of bacteriocins by lactic acid bacteria. Int J Food Microbiol 80:101–116

    Article  PubMed  CAS  Google Scholar 

  9. Panesar PS, Kennedy JF, Knill CJ, Kosseva MR (2007) Applicability of pectate-entrapped Lactobacillus casei cells for L (+) lactic acid production from whey. Appl Microbiol Biotechnol 74:35–42

    Article  PubMed  CAS  Google Scholar 

  10. Arskold E, Svensson M, Grage H, Roos S, Radstrom P, van-Niel EW (2007) Environmental influences on exopolysaccharide formation in Lactobacillus reuteri ATCC 55730. Int J Food Microbiol 116:159–167

    Article  PubMed  Google Scholar 

  11. Di-Cagno R, De-Angelis M, Limitone A, Minervini F, Carnevali P, Corsetti A, Gaenzle M, Ciati R, Gobbetti M (2006) Glucan and fructan production by sourdough Weissella cibaria and Lactobacillus plantarum. J Agric Food Chem 54:9873–9881

    Article  PubMed  CAS  Google Scholar 

  12. Narendranath NV, Power R (2005) Relationship between pH and medium dissolved solids in terms of growth and metabolism of lactobacilli and Saccharomyces cerevisiae during ethanol production. Appl Environ Microbiol 71:2239–2243

    Article  PubMed  CAS  Google Scholar 

  13. Ogawa J, Kishino S, Ando A, Sugimoto S, Mihara K, Shimizu S (2005) Production of conjugated fatty acids by lactic acid bacteria. J Biosci Bioeng 100:355–364

    Article  PubMed  CAS  Google Scholar 

  14. Hugenholtz J, Sybesma W, Groot MN, Wisselink W, Ladero V, Burgess K, van-Sinderen D, Piard JC, Eggink G, Smid EJ, Savoy G, Sesma F, Jansen T, Hols P, Kleerebezem M (2002) Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek 82:217–235

    Article  PubMed  CAS  Google Scholar 

  15. Ikram-ul-Haq Mukhtar H (2006) Biosynthesis of protease from Lactobacillus paracasei: kinetic analysis of fermentation parameters. Indian J Biochem Biophys 43:377–381

    PubMed  CAS  Google Scholar 

  16. Matsuzaki T, Yamazaki R, Hashimoto S, Yokokura T (1997) Antidiabetic effects of an oral administration of Lactobacillus casei in a non-insulin-dependent diabetes mellitus (NIDDM) model using KK-Ay mice. Endocr J 44(3):357–365

    Article  PubMed  CAS  Google Scholar 

  17. Wintzingerode FV, Gobel UB, Stackebrandt F (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  18. Chassy BM, Giuffrida A (1980) Method for the lysis of Gram-positive, asporogenous bacteria with lysozyme. Appl Environ Microbiol 39:153–158

    PubMed  CAS  Google Scholar 

  19. Klaenhammer TR (1984) A general method for plasmid isolation in lactobacilli. Curr Microbiol 10:23–28

    Article  CAS  Google Scholar 

  20. Blumberg PM, Strominger JL (1974) Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Microbiol Mol Biol Rev 38:291–335

    CAS  Google Scholar 

  21. Ghuysen J-M (1968) Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev 32:425–464

    PubMed  CAS  Google Scholar 

  22. De Man JC, Rogosa M, Scharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135

    Google Scholar 

  23. Bürgmann H, Pesaro M, Widmer F, Zeyer J (2001) A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods 45:7–20

    Article  PubMed  Google Scholar 

  24. Frostegard A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420

    PubMed  CAS  Google Scholar 

  25. Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715–4724

    PubMed  CAS  Google Scholar 

  26. Roose-Amsaleg CL, Garnier-Sillam E, Harry M (2001) Extraction and purification of microbial DNA from soil and sediment samples. Appl Soil Ecol 18:47–60

    Article  Google Scholar 

  27. Braun V, Hantke K (1974) Biochemistry of bacterial cell envelopes. Ann Rev Biochem 43:89–121

    Article  PubMed  CAS  Google Scholar 

  28. Ezaki T, Suzuki S (1982) Achromopeptidase for lysis of anaerobic gram-positive cocci. J Clin Microbiol 16:844–846

    PubMed  CAS  Google Scholar 

  29. Schindler CA, Schuhardt VT (1964) Lysostaphin: a new bacteriolytic agent for the staphylococcus. Proc Natl Acad Sci USA 51:414–421

    Article  PubMed  CAS  Google Scholar 

  30. Fliss I, Emond E, Simard RE, Pandian S (1991) A rapid and efficient method of lysis of Listeria and other gram-positive bacteria using mutanolysin. Biotechniques 11(453):456–457

    Google Scholar 

  31. Niwa T, Kawamura Y, Katagiri Y, Ezaki T (2005) Lytic enzyme, labiase for a broad range of Gram-positive bacteria and its application to analyze functional DNA/RNA. J Microbiol Methods 61:251–260

    Article  PubMed  CAS  Google Scholar 

  32. Wise EM Jr, Park JT (1965) Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proc Natl Acad Sci USA 54:75–81

    Article  PubMed  CAS  Google Scholar 

  33. Strominger JL, Park JT, Thompson RE (1959) Composition of the cell wall of Staphylococcus aureus: its relation to the mechanism of action of penicillin. J Biol Chem 234:3263–3268

    PubMed  CAS  Google Scholar 

  34. Kitano K, Tomasz A (1979) Triggering of autolytic cell wall degradation in Escherichia coli by beta-lactam antibiotics. Antimicrob Agents Chemother 16:838–848

    PubMed  CAS  Google Scholar 

  35. Buist G, Karsens H, Nauta A, van-Sinderen D, Venema G, Kok J (1997) Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin, AcmA. Appl Environ Microbiol 63:2722–2728

    PubMed  CAS  Google Scholar 

  36. Koch AL (2001) Autolysis control hypotheses for tolerance to wall antibiotics. Antimicrob Agents Chemother 45:2671–2675

    Article  PubMed  CAS  Google Scholar 

  37. Baquero F (1997) Gram-positive resistance: challenge for the development of new antibiotics. J Antimicrob Chemother 39:1–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant for the “Microbial Diversity and Identification Project” funded by the National Bureau of Agriculturally Important Organisms, Mau, Uttar Pradesh, India. The authors would like to thank Dr. D. K. Arora (Director, NBAIM) for the help in supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachinandan De.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De, S., Kaur, G., Roy, A. et al. A Simple Method for the Efficient Isolation of Genomic DNA from Lactobacilli Isolated from Traditional Indian Fermented Milk (dahi). Indian J Microbiol 50, 412–418 (2010). https://doi.org/10.1007/s12088-011-0079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-011-0079-4

Keywords

Navigation