Skip to main content
Log in

In Vitro Evaluation of Probiotic Potential of Selected Lactic Acid Bacteria Strains

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Research of human microbiome demonstrates that in order to develop next generation of probiotic agents, it is necessary to choose bacterial strains featured by special properties, such as the ability of the cells to attach to intestinal walls, resistance to bile and acids, bacteriocin synthesis, antioxidative and antipathogenic activity, and survivability in intestines. Thirty-three strains of lactic acid bacteria of Lactobacillus and Lactococcus genera from the Lomonosov Moscow State University Collection of Microorganisms (CM MSU) have been tested for important probiotic properties which assist these bacteria to settle effectively in intestines: cell adhesion, ability to form biofilms, agglutination with lectin (concanavalin A), and antimicrobial activity. The results of experiments clearly demonstrate that all these properties can be classified as strain characteristics and differ even within the same species. Besides the cultures of Lactobacillus with good agglutination ability with concanavalin A (Lact. caucasicus CM MSU 155, Lact. brevis CM MSU 521), we also discovered strains with high adhesion properties (Lact. acidophilus CM MSU 146—89% affinity for hexadecane; Lact. paracasei CM MSU 527—85%; Lact. plantarum CM MSU 508—78%; Lact. caucasicus CM MSU 155—70%; and Lact. delbrueckii CM MSU 571—57%), biofilm formation ability with a hydrophobic carrier (Lact. plantarum CM MSU 588—OD590 of crystal violet extracts = 1.336; Lact. brevis CM MSU 521—OD590 = 1.207; and Lact. brevis CM MSU 535—OD590 = 1.151), and with high antimicrobial activity specially to Staphylococcus aureus. Lact. brevis CM MSU 521 possesses the best property combination, which makes it potentially applicable as a very good lactic acid probiotic strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Buck BL, Altermann E, Svingerud T, Klaenhammer TR (2005) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71(12):8344–8351. https://doi.org/10.1128/AEM.71.12.8344-8351.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walter J, Schwab C, Loach DM, Ganzle MG, Tannock GW (2008) Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology (SGM) 154(1):72–80. https://doi.org/10.1099/mic.0.2007/010637-0

    Article  CAS  Google Scholar 

  3. Dertli E, Mayer MJ, Narbad A (2015) Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiol 15(8):1–9. https://doi.org/10.1186/s12866-015-0347-2

    Article  CAS  Google Scholar 

  4. Buntin N, de Vos WM, Hongpattarakere T (2017) Variation of mucin adhesion, cell surface characteristics, and molecular mechanisms among Lactobacillus plantarum isolated from different habitats. Appl Microbiol Biotechnol 101(20):7663–7674. https://doi.org/10.1007/s00253-017-8482-3

    Article  CAS  PubMed  Google Scholar 

  5. Grigoryan S, Bazukyan I, Trchounian A (2018) Aggregation and adhesion activity of lactobacilli isolated from fermented products in vitro and in vivo: a potential probiotic strain. Probiotics Antimicrob Proteins 10(2):269–276. https://doi.org/10.1007/s12602-017-9283-9

    Article  CAS  PubMed  Google Scholar 

  6. Piette JP, Idziak ES (1992) A model study of factors involved in adhesion of Pseudomonas fluorescens to meat. Appl Environ Microbiol 58(9):2783–2791 doi: 0099-2240/92/092783-09$02.00/0

    Article  CAS  Google Scholar 

  7. Duary RK, Rajput YS, Batish VK, Grover S (2011) Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells. Indian J Med Res 134(5):664–671. https://doi.org/10.4103/0971-5916.90992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nikolaev YA, Plakunov VK (2007) Biofilm – “City of microbes” or an analogue of multicellular organisms? Microbiology 76(2):125–138. https://doi.org/10.1134/S0026261707020014

    Article  CAS  Google Scholar 

  9. Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42(1–2):9–27. https://doi.org/10.1016/S0168-1605(98)00060-9

    Article  CAS  PubMed  Google Scholar 

  10. Zarate G, Chaia AP (2009) Dairy bacteria remove in vitro dietary lectins with toxic effects on colonic cells. J Appl Microbiol 106(3):1050–1057. https://doi.org/10.1111/j.1365-2672.2008.04077.x

    Article  CAS  PubMed  Google Scholar 

  11. De Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13(4):194–199. https://doi.org/10.1159/000104752

    Article  CAS  PubMed  Google Scholar 

  12. Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72(4):728–764. https://doi.org/10.1128/MMBR.00017-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LM (2018) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28. https://doi.org/10.1016/j.copbio.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  14. Borrero J, Kelly E, O’Connor PM, Kelleher P, Scully C, Cotter PD, van Sinderen D (2017) Plantaricyclin A, a novel circular bacteriocin produced by Lactobacillus plantarum NI326: purification, characterization, and heterologous production. Appl Environ Microbiol 84(1):01801–01807. https://doi.org/10.1128/aem.01801-17

    Article  CAS  Google Scholar 

  15. Chervinets Y, Chervinets V, Shenderov B, Belyaeva E, Troshin A, Lebedev S, Danilenko V (2018) Adaptation and probiotic potential of lactobacilli, isolated from the oral cavity and intestines of healthy people. Probiotics Antimicrob Proteins 10(1):22–33. https://doi.org/10.1007/s12602-017-9348-9

    Article  CAS  PubMed  Google Scholar 

  16. Cui X, Shi Y, Gu S, Yan X, Chen H, Ge J (2018) Antibacterial and antibiofilm activity of lactic acid bacteria isolated from traditional artisanal milk cheese from northeast China against enteropathogenic bacteria. Probiotics Antimicrob Proteins 10(4):601–610. https://doi.org/10.1007/s12602-017-9364-9

    Article  CAS  PubMed  Google Scholar 

  17. Yeh E, Pinsky BA, Banae N, Baron EJ (2009) Hair sheep blood, citrated or defibrinated, fulfills all requirements of blood agar for diagnostic microbiology laboratory tests. PLoS ONE 4(7):e6141. https://doi.org/10.1371/journal.pone.0006141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim SY, Ogawa Y, Adachi Y (2006) Canine intestinal lactic acid bacteria agglutinated with concanavalin A. J Vet Med Sci 68(12):1351–1354. https://doi.org/10.1292/jvms.68.1351

    Article  CAS  PubMed  Google Scholar 

  19. Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int 36(9–10):895–904. https://doi.org/10.1016/S0963-9969(03)00098-X

    Article  CAS  Google Scholar 

  20. Mart’yanov SV, Zhurina MV, El’-Registan GI, Plakunov VK (2014) Activation of formation of bacterial biofilms by azithromycin and prevention of this effect. Microbiology 83(6):723–731. https://doi.org/10.1134/S0026261714060113

    Article  CAS  Google Scholar 

  21. Bauer A, Kirby W, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496. https://doi.org/10.1093/ajcp/45.4_ts.493

    Article  CAS  PubMed  Google Scholar 

  22. Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clinical Microbiology Reviews 11(1):142–201. https://doi.org/10.1128/cmr.11.1.142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bodey GP, Boliva R, Fainstein V, Jadeja L (1983) Infections caused by Pseudomonas aeruginosa. Clinical Infectious Diseases 5(2):279–313. https://doi.org/10.1093/clinids/5.2.279

    Article  CAS  Google Scholar 

  24. Crossley K, Loesch D, Landesman B, Mead K, Chern M, Strate R (1979) An outbreak of infections caused by strains of Staphylococcus aureus resistant to methicillin and aminoglycosides. I Clinical Studies Journal of Infectious Diseases 139(3):273–279 https://10.1093/infdis/139.3.273

    Article  CAS  Google Scholar 

  25. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  26. Argyri AA, Zoumpopoulou G, Karatzas K-AG, Tsakalidou E, Nychas G-JE, Panagou EZ, Tassou CC (2013) Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiology 33(2):282–291. https://doi.org/10.1016/j.fm.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  27. Liasi SA, Azmi TI, Hassan MD, Shuhaimi M, Rosfarizan M, Ariff AB (2009) Antimicrobial activity and antibiotic sensitivity of three isolates of lactic acid bacteria from fermented fish product, Budu, Malays. J Microbiol 5:33–37 https://doi.org/10.21161/mjm.15008

    Google Scholar 

  28. Dixit G, Samarth D, Tale V, Bhadekar R (2013) Comparative studies on potential probiotic characteristics of Lactobacillus acidophilus strains. Eur J Biosci 7:1–9. https://doi.org/10.5053/ejobios.2013.7.0.1

    Article  Google Scholar 

  29. Kang CH, Gu T, So JS (2018) Possible probiotic lactic acid bacteria isolated from oysters (Crassostrea gigas). Probiotics Antimicrob Proteins 10(4):728–739. https://doi.org/10.1007/s12602-017-9315-5

    Article  CAS  PubMed  Google Scholar 

  30. Food, Organization A, Organization WH (2006) Probiotics in food: health and nutritional properties and guidelines for evaluation. FAO. http://www.fao.org/tempref/docrep/fao/009/a0512e/a0512e00.pdf

    Google Scholar 

  31. de Albuquerque TMR, Garcia EF, de Oliveira AA, Magnani M, Saarela M, de Souza EL (2018) In vitro characterization of Lactobacillus strains isolated from fruit processing by-products as potential probiotics. Probiotics Antimicrob Proteins 10(4):704–716. https://doi.org/10.1007/s12602-017-9318-2

    Article  CAS  PubMed  Google Scholar 

  32. Ruas-Madiedo P, Gueimonde M, Margolles A, de los Reyes-Gavilan CG, Salminen S (2006) Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot 69(8):2011–2015. https://doi.org/10.4315/0362-028X-69.8.2011

    Article  CAS  PubMed  Google Scholar 

  33. Vázquez JA, González MP, Murado MA (2005) Effects of lactic acid bacteria cultures on pathogenic microbiota from fish. Aquaculture 245(1–4):149–161. https://doi.org/10.1016/j.aquaculture.2004.12.008

    Article  Google Scholar 

  34. Lo Verso L, Lessard M, Talbot G, Fernandez B, Fliss I (2018) Isolation and selection of potential probiotic bacteria from the pig gastrointestinal tract. Probiotics Antimicrob Proteins 10(2):299–312. https://doi.org/10.1007/s12602-017-9309-3

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Netrusov.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimko, A.I., Cherdyntseva, T.A., Brioukhanov, A.L. et al. In Vitro Evaluation of Probiotic Potential of Selected Lactic Acid Bacteria Strains. Probiotics & Antimicro. Prot. 12, 1139–1148 (2020). https://doi.org/10.1007/s12602-019-09599-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-019-09599-6

Keywords

Navigation