Skip to main content
Log in

Isolation and characterization of β-galactosidase fromLactobacillus crispatus

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

β-Galactosidase was isolated from the cell-free extracts ofLactobacillus crispatus strain ATCC 33820 and the effects of temperature, pH, sugars and monovalent and divalent cations on the activity of the enzyme were examined.L. crispatus produced the maximum amount of enzyme when grown in MRS medium containing galactose (as carbon source) at 37°C and pH 6.5 for 2 d, addition of glucose repressing enzyme production. Addition of lactose to the growth medium containing galactose inhibited the enzyme synthesis. The enzyme was active between 20 and 60°C and in the pH range of 4–9. However, the optimum enzyme activity was at 45°C and pH 6.5. The enzyme was stable up to 45°C when incubated at various temperatures for 15 min at pH 6.5. When the enzyme was exposed to various pH values at 45°C for 1 h, it retained the original activity over the pH range of 6.0–7.0. Presence of divalent cations, such as Fe2+ and Mn2+, in the reaction mixture increased enzyme activity, whereas Zn2+ was inhibitory. TheK m was 1.16 mmol/L for 2-nitrophenyl-β-d-galactopyranose and 14.2 mmol/L for lactose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckwith J.: The lactose operon, pp. 1444–1452 in J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter, H.E. Umbarger (Eds):Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington (DC) 1987.

    Google Scholar 

  • Blankenship L.C., Wells P.A.: Microbial β-galactosidase: a survey for neutral pH optimum enzymes.J. Milk Food Technol.37, 199–202 (1994).

    Google Scholar 

  • Fisher K., Johnson M.C., Ray B.: Lactose hydrolyzing enzyme inLactobacillus acidophilus strains.Food Microbiol.2, 23–29 (1985).

    Article  CAS  Google Scholar 

  • Gekas V., López-Leiva M.: Hydrolysis of lactose: a literature review.Process Biochem.20, 2–12 (1985).

    CAS  Google Scholar 

  • Goodman R.E., Pederson D.M.: β-Galactosidase fromBacillus stearothermophilus.Can. J. Microbiol.22, 817–825 (1976).

    PubMed  CAS  Google Scholar 

  • Greenberg N.A., Mahoney R.R.: Immobilisation of lactase (β-galactosidase) for use in dairy processing: a review.Process Biochem.16, 2–8 (1981).

    CAS  Google Scholar 

  • Greenberg N.A., Mahoney R.R.: Production and characterization of β-galactosidase fromStreptococcus thermophilus J. Food Sci.47, 1824–1835 (1982).

    Article  CAS  Google Scholar 

  • Harju M.: Lactose hydrolysis.Internat. Dairy Food Bull.212, 50–55 (1987).

    CAS  Google Scholar 

  • Hickey M.W., Hillier A.J., Jago G.R.: Transport and metabolism of lactose, glucose, and galactose in homofermentative lactobacilli.Appl. Environ. Microbiol.51, 825–831 (1986).

    PubMed  CAS  Google Scholar 

  • Iwasaki T., Yoshioka Y., Kanachi T.: Study on the metabolism ofLactobacillus bifidus. III. Purification and some properties of β-galactosidase of a strain ofLactobacillus bifidus.Nippon Nogei Kagaku Kaishi45, 207–215 (1971).

    CAS  Google Scholar 

  • Kandler O., Weiss N.: GenusLactobacillus, pp. 1209–1234 in P.H.A. Sneath, N.S. Mair, M.E. Sharpe, J.G. Holt (Eds):Bergey's Manual of Systematic Bacteriology, Vol. 2, Williams and Wilkins, Baltimore 1986.

    Google Scholar 

  • Kang Y., Kim J.H., Ryu D.D.Y.: Protoplast fusion ofLactobacillus casei.Agric. Biol. Chem.51, 2221–2227 (1987).

    CAS  Google Scholar 

  • Lineweaver H., Burk D.: Determination of enzyme dissociation constants.J. Am. Chem. Soc.56, 658–666 (1934).

    Article  CAS  Google Scholar 

  • Linko S., Enwald S., Vahvaselkä M., Mäyrä-Mäkinen A.: Optimization of the production of β-galactosidase by an autolytic strain ofStreptococcus salivarius subsp.thermophilus, pp. 588–594 in A. Tanaka, H.W. Blanch (Eds).Enzyme Engineerings XI. The New York Academy of Sciences, New York 1992.

    Google Scholar 

  • Magasanik B., Neidhardt F.C.: Regulation of carbon and nitrogen utilization, pp. 1318–1325 in J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter, H.E. Umbarger (Eds):Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington (DC) 1987.

    Google Scholar 

  • Monod J., Cohn M.: La biosynthése induite des enzymes (adaptation enzymatique).Adv. Enzymol.13, 67–119 (1952).

    CAS  Google Scholar 

  • Poolman B.: Biochemistry and molecular biology of galactoside transport and metabolism in lactic acid bacteria.Lait73, 87–96 (1993).

    Article  CAS  Google Scholar 

  • Poolman B., Royer T.J., Mainzer S.E., Schmidt B.F.: Carbohydrate utilization inStreptococcus thermophilus: characterization of the genes for aldose I-epimerase (mutarotase) and UDP-glucose 4-epimerase.J. Bacteriol.172, 4037–4047 (1990).

    PubMed  CAS  Google Scholar 

  • Premi L., Sandine W.E., Elliker P.R.: Lactose-hydrolyzing enzymes ofLactobacillus species.Appl. Microbiol.24, 51–57 (1972).

    PubMed  CAS  Google Scholar 

  • Rahm K.A.A., Lee B.H.: Production and characterization of β-galactosidase from psychrotropicbacillus subtilis KL88.Biotechnol. Appl. Biochem.13, 246–256 (1991).

    Google Scholar 

  • Ramana Rao M.V., Dutta S.M.: An active β-galactosidase preparation fromStreptococcus thermophilus.Indian J. Dairy Sci.32, 187–188 (1979).

    Google Scholar 

  • Ramana Rao M.V., Dutta S.M.: Purification and properties of β-galactosidase fromStreptococcus thermophilus.J. Food. Sci.46, 1419–1423 (1981).

    Article  Google Scholar 

  • Riou C., Freyssinet G., FVvre M.: Purification and characterization of a β-galactosidase fromStreptococcus thermophilus.J. Food Sci.46, 1419–1423 (1981).

    Article  Google Scholar 

  • Saito T., Kato K., Maeda S., Suzuki T., Shiba S., Lijima S., Kobayashi T.: Overproduction of thermostable β-galactosidase inEscherichia coli, its purification and molecular structure.J. Ferment. Bioeng.74, 12–16 (1992).

    Article  CAS  Google Scholar 

  • Sani R.K., Chakraborti S., Sobti R.C., Patnaik P.R., Banerjee U.C.: Characterization and some reaction-engineering aspects of thermostable extracellular β-galactosidase from a newBacillus species.Folia Microbiol.43, 367–371 (1999).

    Article  Google Scholar 

  • Sasaki K., Samant S.K., Suzuki M., Toba T., Itoh T.: β-Galactosidase and 6-phospho-β-galactosidase activities in strains of theLactobacillus acidophilus complex.Lett. Appl. Microbiol.16, 97–100 (1993).

    CAS  Google Scholar 

  • Smart J.B., Crow V.L., Thomas T.D.: Lactose hydrolysis in milk and whey with β-galactosidase fromStreptococcus thermophilus.N. Z. J. Dairy Sci. Technol.20, 43–56 (1985).

    CAS  Google Scholar 

  • Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto E.K., Goeke N.M., Olson B.J., Klenk D.C.: Measurement of protein using bicinchoninic acid.Anal. Biochem.150, 76–85 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Toba T., Tomita Y., Itoh T., Adachi S.: β-Galactosidase of lactic acid bacteria: characterization by oligosaccharides formed during hydrolysis of lactose.J. Dairy Sci.64, 185–192 (1981).

    CAS  Google Scholar 

  • Wierzbicki L.E., Kosikowski F.V.: Lactase potential of various microorganisms grown in whey.J. Dairy Sci.56, 26–32 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.W., Rajagopal, S.N. Isolation and characterization of β-galactosidase fromLactobacillus crispatus . Folia Microbiol 45, 29–34 (2000). https://doi.org/10.1007/BF02817446

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02817446

Keywords

Navigation