Skip to main content

Advertisement

Log in

The Complement of Soluble Sugars in the Saccharum Complex

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

The use of sugarcane as a biofactory and source of renewable biomass is being investigated increasingly due to its vigorous growth and ability to fix a large amount of carbon dioxide compared to other crops. The high biomass resulting from sugarcane production (up to 80 t/ha) makes it a candidate for genetic manipulation to increase the production of other sugars found in this research that are of commercial interest. Sucrose is the major sugar measured in sugarcane with hexoses glucose and fructose present in lower concentrations; sucrose can make up to 60% of the total dry weight of the culm. Species related to modern sugarcane cultivars were examined for the presence of sugars other than glucose, fructose and sucrose with the potential of this crop as a biofactory in mind. The species examined form part of the Saccharum complex, a closely-related interbreeding group. Extracts of the immature and mature internodes of six different species and a hybrid were analysed with gas chromatography mass spectrometry to identify mono-, di- and tri-saccharides, as well as sugar acids and sugar alcohols. Thirty two sugars were detected, 16 of which have previously not been identified in sugarcane. Apart from glucose, fructose and sucrose the abundance of sugars in all plants was low but the research demonstrated the presence of sugar pathways that could be manipulated. Since species from the Saccharum complex can be interbred, any genes leading to the production of sugars of interest could be introgressed into commercial Saccharum species or manipulated through genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DM:

dry mass

FM:

fresh mass

GC:

gas chromatography

MS:

mass spectrometry

References

  • Abebe T, Guenzi AC, Martin B et al (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Avonce N, Leyman B, Thevelein J et al (2005) Trehalose metabolism and glucose sensing in plants. Biochem Soc Trans 33:276–279

    Article  CAS  PubMed  Google Scholar 

  • Bieleski R (1982) Sugar alcohols. In: Loewus FA, Tanner W (eds) Plant carbohydrates vol 13A. Springer-Verlag, New York, p 158

    Google Scholar 

  • Bieleski RL, Briggs BG (2005) Taxonomic patterns in the distribution of polyols within the Proteaceae. Aust J Bot 53:205–217

    Article  CAS  Google Scholar 

  • Bonnett GD, Hewitt ML, Glassop D (2006) Effects of high temperature on the growth and composition of sugarcane internodes. Aust J Agric Res 57:1087–1095

    Article  Google Scholar 

  • Bosch S (2005) Trehalose and carbon partitioning in sugarcane. Dissertation,University of Stellenbosch

  • Bosch S, Rohwer JM, Botha FC (2003) The sugarcane metabolome. 77th South African Sugarcane Technologists Association Congress, 19-22 August. Durbin. 7:129–133

    Google Scholar 

  • Burget EG, Verma R, Molhoj M et al (2003) The biosynthesis of L-arabinose in plants: Molecular cloning and characterization of a golgi-localized UDP-D-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis. Plant Cell 15:523–531

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Ann Rev Plant Physiol Plant Mol Biol 47:445–476

    Article  CAS  Google Scholar 

  • Claeyssen É, Rivoal J (2007) Isozymes of plant hexokinase: occurrence, properties and functions. Phytochemistry 68:709–731

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS, Medd JM, Dolezal O (1992) Suppressors of an arabinose-sensitive mutant of Arabidopsis thaliana. Aust J Plant Physiol 19:367–375

    Article  CAS  Google Scholar 

  • Da Costa Leite JM, Trugo LC, Costa LSM et al (2000) Determination of oligosaccharides in Brazilian honeys of different botanical origin. Food Chem 70:93–98

    Article  Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, p 7

    Google Scholar 

  • Dumville JC, Fry SC (2003) Gentiobiose: a novel oligosaccharide in ripening tomato fruit. Planta 216:484–495

    CAS  PubMed  Google Scholar 

  • Eastmond PJ, Li Y, Graham IA (2003) Is trehalose-6-phosphate a regulator of sugar metabolism in plants? J Exp Bot 54:533–537

    Article  CAS  PubMed  Google Scholar 

  • Edye LA, Doherty WOS, Blinco JA (2006) The sugarcane biorefinery: energy crops and processes for the production of liquid fuels and renewable commodity chemicals. Int Sugar J 108:19–27

    CAS  Google Scholar 

  • Eggleston G, Legendre B, Tew T (2004) Indicators of freeze-damaged sugarcane varieties which can predict processing problems. Food Chem 87:119–133

    Article  CAS  Google Scholar 

  • Evans NA, Hoyne PA, Stone BA (1984) Characteristics and specificity of the interaction of a fluorochrome from aniline blue (Sirofluor) with polysaccharides. Carbohydr Polym 4:215–230

    Article  CAS  Google Scholar 

  • Farrant JM, Lehner A, Cooper K et al (2009) Desiccation tolerance in the vegetative tissues of the fern Mohria caffrorum is seasonally regulated. Plant J 57:65–79

    Article  CAS  PubMed  Google Scholar 

  • Felix JdM, Papini-Terzi FS, Rocha FR et al (2009) Expression profile of signal transduction components in sugarcane population segregating for sugar content. Trop Plant Biol 2:98–109

    Article  CAS  Google Scholar 

  • Fong Chong B, Bonnett GD, Glassop D et al (2007) Growth and metabolism in sugarcane are altered by the creation of a new hexose-phosphate sink. Plant Biotechnol J 5:240–253

    Article  Google Scholar 

  • Fougere F, Le Rudulier D, Streeter JG (1991) Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol 96:1228–1236

    Article  CAS  PubMed  Google Scholar 

  • Glassop D, Bacic A, Bonnett GD et al (2007) Changes in the sugarcane metabolome with stem development. Are they related to sucrose accumulation? Plant Cell Physiol 48:573–584

    Article  CAS  PubMed  Google Scholar 

  • Goddijn OJM, Smeekens S (1998) Sensing trehalose biosynthesis in plants. Plant J 14:143–146

    Article  CAS  PubMed  Google Scholar 

  • Goddijn OJM, van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4:315–319

    Article  PubMed  Google Scholar 

  • Goddijn OJM, Verwoerd TC, Voogd E et al (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113:181–190

    Article  CAS  PubMed  Google Scholar 

  • Goodacre R, Broadhurst D, Smilde AK et al (2007) Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 3:231–241

    Article  CAS  Google Scholar 

  • Gorham J, Hughes L, Wyn Jones RG (1981) Low-molecular-weight carbohydrates in some salt-stressed plants. Physiol Plant 53:27–33

    Article  CAS  Google Scholar 

  • Hogervorst PAM, Wackers FL, Romeis J (2007) Detecting nutritional state and food source use in field-collected insects that synthesize honeydew oligosaccharides. Funct Ecol 21:936–946

    Article  Google Scholar 

  • Hoepfner SW, Botha FC (2003) Expression of fructokinase isoforms in the sugarcane culm. Plant Physiol Biochem 41:741–747

    Article  CAS  Google Scholar 

  • Irvine JE (1999) Saccharum species as horticultural classes. Theor Appl Genet 98:186–194

    Article  Google Scholar 

  • Kandler O, Hopf H (1980) Occurrence, metabolism, and function of oligosaccharides. In: Preiss J (ed) The biochemistry of plants: a comprehensive treatise, vol 3 carbohydrates: structure and function. Academic, New York, pp 221–270

    Google Scholar 

  • Keating BA, Robertson MJ, Muchow RC et al (1999) Modelling sugarcane production systems I. Development and performance of the sugarcane module. Field Crop Res 61:253–271

    Article  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  CAS  PubMed  Google Scholar 

  • Loescher WH, Everard JD (1996) Sugar alcohol metabolism in sinks and sources. In: Zamski E, Schaffer AA (eds) Photoassimilate distrubtion in plants and crops. CRC, New York, pp 185–207

    Google Scholar 

  • Loreti E, Alpi A, Perata P (2000) Glucose and disaccharide—sensing mechanisms modulate the expression of alpha-amylase in barley embryos. Plant Physiol 123:939–948

    Article  CAS  PubMed  Google Scholar 

  • McCormick AJ, Cramer MD, Watt DA (2008) Differential expression of genes in the leaves of sugarcane in response to sugar accumulation. Trop Plant Biol 1:142–158

    Article  CAS  Google Scholar 

  • Meikle PJ, Hoogenraad NJ, Bonig I et al (1994) A (1→3, 14)—β- glucan-specific monoclonal antibody and its use in the quantitation and immunocytochemical location of (1→3, 14)—β—glucans. Plant J 5:1–9

    Article  CAS  PubMed  Google Scholar 

  • Moore P (1987) Anatomy and morphology. In: Heinz DJ (ed) Developments in crop science 11—sugarcane improvement through breeding. Elsevier, New York

    Google Scholar 

  • Mukherjee SK (1957) Origin and distribution of Saccharum. Bot Gaz 119:55–61

    Article  Google Scholar 

  • Müller J, Wiemken A, Aeschbacher R (1999) Trehalose metabolism in sugar sensing and plant development. Plant Sci 147:37–47

    Article  Google Scholar 

  • Mutalshaikhov G, Ismailov ZF (1976) Investigation of the carbohydrates of Saccharum spontaneum and Arundo donax. Chem Nat Compd 10:655–656

    Article  Google Scholar 

  • Nadwodnik J, Lohaus G (2008) Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritima , Prunus persica and Apium graveolens. Planta 227:1079–1089

    Google Scholar 

  • Nichols BW (1974) The structure and function of plant glycolipids. In Plant Charbohydrate Biochemistry, Pridham JB (ed) Academic Press, London, pp 97–108

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  CAS  PubMed  Google Scholar 

  • Paul M, Cockburn W (1989) Pinitol, a compatible solute in Mesembryanthemum crystallinum L.? J Exp Bot 40:1093–1098

    Article  CAS  Google Scholar 

  • Pollock CJ, Cairns AJ (1991) Fructan metabolism in grasses and cereals. Annu Rev Plant Physiol 42:77–101

    Article  CAS  Google Scholar 

  • Pommerrenig B, Papini-Terzi FS, Sauer N (2007) Differential regulation of sorbitol and sucrose loading into the phloem of Plantago major in response to salt stress. Plant Physiol 144:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Rae AL, Perroux J, Grof CPL (2005) Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem: a potential role for the ShSUT1 sucrose transporter. Planta 220:817–825

    Article  CAS  PubMed  Google Scholar 

  • Ralet MC, Thibault JF, Faulds CB et al (1994) Isolation and purification of feruloylated oligosaccharides from cell walls of sugar-beet pulp. Carbohydr Res 263:227–241

    Article  CAS  PubMed  Google Scholar 

  • Roesnner-Tunali U, Hegemann B, Lytovchenko A et al. (2003) Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133:84–99

    Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signalling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Sheen J (2005) Sugar sensing and signalling networks in plants. Biochem Soc Trans 33:269–271

    Article  CAS  PubMed  Google Scholar 

  • Schluepmann H, van Dijken A, Aghdasi M et al (2004) Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant Physiol 135:879–890

    Article  CAS  PubMed  Google Scholar 

  • Seymour FR, Unruh SL, Nehlich DA (1989) Quantitation of free sugars in plant tissue by G.l.c. of their peracetylated aldononitrile and ketoxime derivatives. Carbohydr Res 191:175–189

    Article  CAS  Google Scholar 

  • Sinha AK, Hofmann MG, Römer U et al (2002) Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiol 128:1480–1489

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol 51:49–81

    Article  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochem 28:1057–1060

    Article  CAS  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98

    Article  CAS  PubMed  Google Scholar 

  • Stacey BE (1974) Plant polyols. In: Pridham JB (ed) Plant carbohydrate biochemistry. Academic, London, pp 47–59

    Google Scholar 

  • Streeter JG, Lohnes DG, Fioritto RJ (2001) Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant Cell Environ 24:429–438

    Article  CAS  Google Scholar 

  • Trip P, Nelson CD, Krotkov G (1965) Selective and preferential translocation of C14-labeled sugars in white ash and lilac. Plant Physiol 40:740–747

    Article  CAS  PubMed  Google Scholar 

  • Weise S, Weber AM, Sharkey T (2004) Maltose is the major form of carbon exported from the chloroplast at night. Planta 218:474–482

    Article  CAS  PubMed  Google Scholar 

  • Whalen MD (1991) Taxonomy of saccharum (Poaceae). Baileya 23:109–125

    Google Scholar 

  • Woolard GR, Rathbone EB, Novellie L (1976) A hemicellulosic beta-D-glucan from the endosperm of sorghum grain. Carbohydr Res 51:249–252

    Article  CAS  Google Scholar 

  • Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5:109–117

    Article  CAS  PubMed  Google Scholar 

  • Zhang SZ, Yang BP, Feng CL et al (2006) Expression of the Grifola Frondosa trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum Officinarum L.). J Integr Plant Biol 48:453–459

    Article  CAS  Google Scholar 

  • Zhifang G, Loescher WH (2003) Expression of a celery mannose-6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimer. Plant Cell Environ 26:275–283

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Louise Ryan was supported by a vacation student scholarship from the Cooperative Research Centre for Sugar Industry Innovation through Biotechnology. The authors would also like to thank both CSIRO internal reviewers and the anonymous journal reviewers for their suggested improvements to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna Glassop.

Additional information

Communicated by: Ray Ming

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glassop, D., Ryan, L.P., Bonnett, G.D. et al. The Complement of Soluble Sugars in the Saccharum Complex. Tropical Plant Biol. 3, 110–122 (2010). https://doi.org/10.1007/s12042-010-9049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-010-9049-y

Keywords

Navigation