Skip to main content
Log in

Differential Expression of Genes in the Leaves of Sugarcane in Response to Sugar Accumulation

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

In C4 sugarcane (Saccharum spp. hybrids), photosynthetic activity has been shown to be regulated by the demand for carbon from sink tissues. There is evidence, from other plant species, that sink-limitation of photosynthesis is facilitated by sugar-signaling mechanisms in the leaf that affect photosynthesis through regulation of gene expression. In this work, we manipulated leaf sugar levels by cold-girdling leaves (5°C) for 80 h to examine the mechanisms whereby leaf sugar accumulation affects photosynthetic activity and assess whether signaling mechanisms reported for other species operate in sugarcane. During this time, sucrose and hexose concentrations above the girdle increased by 77% and 81%, respectively. Conversely, leaf photosynthetic activity (A) and electron transport rates (ETR) decreased by 66% and 54%, respectively. Quantitative expression profiling by means of an Affymetrix GeneChip Sugarcane Genome Array was used to identify genes responsive to cold-girdling (56 h). A number of genes (74) involved in primary and secondary metabolic pathways were identified as being differentially expressed. Decreased expression of genes related to photosynthesis and increased expression of genes involved in assimilate partitioning, cell wall synthesis, phosphate metabolism and stress were observed. Furthermore four probe sets homologous to trehalose 6-phosphate phosphatase (TPP; EC 5.3.1.1) and trehalose 6-phosphate synthase (TPS; EC 2.4.1.15) were up- and down-regulated, respectively, indicating a possible role for trehalose 6-phosphate (T6P) as a putative sugar-sensor in sugarcane leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allison JCS, Williams HT, Pammenter NW (1997) Effect of specific leaf nitrogen on photosynthesis of sugarcane. Ann Appl Biol 63:135–144

    Article  Google Scholar 

  2. Amaya A, Cock JH, Hernandez A, Irvine J (1995) Bioligía. In: Casselett C, Torres J, Isaacs C (eds) El cultivo de la Caňa en la zona azucarera de Colombia. Cenicaňa, Cali, Colombia, pp 31–62

    Google Scholar 

  3. Altschul SF, Madden TL, Schaffer AA, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  4. Arruda P (2001) Sugarcane transcriptome. A landmark in plant genomics in the tropics. Genet Mol Biol 24:1–4

    Article  Google Scholar 

  5. Basu PS, Sharma A, Garg ID, Sukumaran NP (1999) Tuber sink modifies photosynthetic response in potato under water stress. Environ Exp Bot 42:25–29

    Article  Google Scholar 

  6. Bläsing OE, Gibon Y, Günther M, Höhne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible WR, Stitt M (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. The Plant Cell 17:3257–3281

    Article  PubMed  CAS  Google Scholar 

  7. Bugos RC, Chiang VL, Zhang XH, Campbell ER, Podila GK, Campbell WH (1995) RNA isolation from plant tissues recalcitrant to extraction in guanidine. Biotechniques 19:734–737

    PubMed  CAS  Google Scholar 

  8. Bull TA, Tovey DA (1974) Aspects of modelling sugar cane growth by computer simulation. Proc Int Soc Sugarcane Technol 165:1021–1032

    Google Scholar 

  9. Carson DL, Huckett BI, Botha FC (2002) Sugarcane ESTs differentially expressed in immature and maturing internodal tissue. Plant Sci 162:289–300

    Article  CAS  Google Scholar 

  10. Casu RE, Dimmock CM, Chapman SC, Grof CPL, McIntyre CL, Bonnett GD, Manners JM (2004) Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling. Plant Mol Biol 54:503–517

    Article  PubMed  Google Scholar 

  11. Casu RE, Grof CPL, Rae AL, McIntyre CL, Dimmock CM, Manners JM (2003) Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues in sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol 52:371–386

    Article  PubMed  CAS  Google Scholar 

  12. Casu RE, Jarmey J, Bonnett G, Manners J (2007) Identification of transcripts associated with cell wall metabolism and development in the stem of sugarcane by Affymetrix GeneChip Sugarcane Genome Array expression profiling. Funct Integr Genomics 7:153–167

    Article  PubMed  CAS  Google Scholar 

  13. Ciereszko I, Johnsson H, Hurry V, Kleczkowski LA (2001) Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis. Planta 212:598–605

    Article  PubMed  CAS  Google Scholar 

  14. Davies C, Robinson SP (2000) Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterization of cDNAs encoding putative cell wall and stress response genes. Plant Physiol 122:803–812

    Article  PubMed  CAS  Google Scholar 

  15. Du YC, Nose A, Kondo A, Wasano K (2000) Diurnal changes in photosynthesis in sugarcane leaves. II. Enzyme activities and metabolite levels relating to sucrose and starch metabolism. Plant Prod Sci 3:9–16

    Article  Google Scholar 

  16. Eastmond PJ, Li Y, Graham IA (2003) Is trehalose-6-phosphate a regulator of sugar metabolism in plants? J Exp Bot 54:533–537

    Article  PubMed  CAS  Google Scholar 

  17. Eastmond PJ, van Dijken AJ, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JD, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:225–235

    Article  PubMed  CAS  Google Scholar 

  18. Edwards GE, Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37:89–102

    Article  CAS  Google Scholar 

  19. Ehness R, Ecker M, Godt DE, Roitsch T (1997) Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving protein phosphorylation. Plant Cell 9:1825–1841

    Article  PubMed  CAS  Google Scholar 

  20. Franck N, Vaast P, Genard M, Dauzat J (2006) Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiol 26:517–525

    PubMed  CAS  Google Scholar 

  21. Franco-Zorrilla JM, Martin AC, Leyva A, Paz-Ares J (2005) Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol 138:847–857

    Article  PubMed  CAS  Google Scholar 

  22. Gibon Y, Blaesing OE, Hannemann J, Carillo P, Höhne M, Hendriks JHM, Palacios N, Cross J, Selbig J, Stitt M (2006) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325

    Article  CAS  Google Scholar 

  23. Grof C, Campbell J (2001) Sugarcane sucrose metabolism: scope for molecular manipulation. Aust J Plant Physiol 28:1–12

    CAS  Google Scholar 

  24. Goldschmidt EE, Huber SC (2001) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiol 99:1443–1448

    Google Scholar 

  25. Gutiérrez-Miceli FA, Morales-Torres R, de Jesús Espinosa-Castañeda Y, Rincón-Rosales R, Mentes-Molina J, Oliva-Llaven MA, Dendooven L (2004) Effects of partial defoliation on sucrose accumulation, enzyme activity and agronomic parameters in sugar cane (Saccharum spp.). J Agron Crop Sci 190:256–261

    Article  Google Scholar 

  26. Hartt CE, Burr GO (1967) Factors affecting photosynthesis in sugarcane. Proc Int Soc Sugarcane Technol 12:590–609

    Google Scholar 

  27. Huckett BA, Botha FC (1995) Stability and potential use of RAPD markers in a sugarcane genealogy. Euphytica 86:117–125

    Article  CAS  Google Scholar 

  28. Iglesias DJ, Lliso I, Tadeo FR, Talon M (2002) Regulation of photosynthesis through source: sink imbalance in citrus is mediated by carbohydrate content in leaves. Physiol Plant 116:563–572

    Article  CAS  Google Scholar 

  29. Ingelbrecht IL, Mandelbaum CI, Mirkov TE (1998) Highly sensitive northern hybridization using a rapid protocol for downward alkaline blotting of RNA. BioTechniques 25:420–425

    PubMed  CAS  Google Scholar 

  30. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acid Res 4(e15):1–8

    Google Scholar 

  31. Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crops Res 92:277–290

    Article  Google Scholar 

  32. Jones MG, Outlaw WH, Lowry OH (1977) Enzymic assay of 10−7 to 10−14 moles of sucrose in plant tissues. Plant Physiol 60:379–383

    Article  PubMed  CAS  Google Scholar 

  33. Kalt-Torres W, Kerr PS, Usuda H, Huber SC (1987) Diurnal changes in maize leaf photosynthesis. Plant Physiol 83:283–288

    PubMed  CAS  Google Scholar 

  34. Krapp A, Hofman B, Schäfer C, Stitt M (1993) Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates: mechanism for the sink regulation of photosynthesis? Plant J 3:817–828

    Article  CAS  Google Scholar 

  35. Krapp A, Quick WP, Stitt W (1991) Ribulose-1,5-bisphosphate carboxylase-oxygenase, other Calvin cycle enzymes and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transcription stream. Planta 186:58–59

    Article  CAS  Google Scholar 

  36. Krapp A, Stitt M (1995) An evaluation of direct and indirect mechanisms for the “sink regulation” of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady state transcript levels after cold-girdling leaves. Planta 195:313–323

    Article  CAS  Google Scholar 

  37. Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P (2005) Trehalose 6-phosphate regulates starch synthesis via post-translational redox activation of ADP-glucose pyrophosphorylase. Proc Natl Acad Sci USA 102:11118–11123

    Article  PubMed  CAS  Google Scholar 

  38. Lawlor DW (1987) Photosynthesis: metabolism, control and physiology. Longman, Harlow, UK

    Google Scholar 

  39. Lee JM, Williams ME, Tingey SV, Rafalski AJ (2002) DNA array profiling of gene expression changes during maize embryo development. Funct Integr Genomics 2:13–27

    Article  PubMed  CAS  Google Scholar 

  40. Leibbrandt NB, Snyman SJ (2003) Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Sci 43:671–677

    CAS  Google Scholar 

  41. Lloyd JC, Zakhleniuk OV (2004) Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. J Exp Bot 55:1221–1230

    Article  PubMed  CAS  Google Scholar 

  42. Lunn JE, Furbank RT (1999) Sucrose biosynthesis in C4 plants. New Phytol 143:221–237

    Article  CAS  Google Scholar 

  43. Lunn JE, Feil R, Hendriks JHM, Gibon Y, Morcuende Osuna D, Scheible WR, Carillo P, Hajirezaei MR, Stitt M (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148

    Article  PubMed  CAS  Google Scholar 

  44. Ma H, Albert HA, Paull R, Moore PH (2000) Metabolic engineering of invertase activities in different subcellular compartments affects sucrose accumulation in sugarcane. Aust J Plant Physiol 27:1021–1030

    CAS  Google Scholar 

  45. Masclaux-Daubresse C, Purdy S, Lemaitre T, Pourtau N, Taconnat L, Renou JP, Wingler A (2007) Genetic variation suggests interaction between cold acclimation and metabolic regulation of leaf senescence. Plant Physiol 143:434–446

    Article  PubMed  CAS  Google Scholar 

  46. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  47. McCormick AJ, Cramer MD, Watt DA (2006) Sink strength regulates photosynthesis in sugarcane. New Phytol 171:759–770

    Article  PubMed  CAS  Google Scholar 

  48. McCormick AJ, Cramer MD, Watt DA (2008) Changes in photosynthetic rates and gene expression of leaves during a source–sink perturbation in sugarcane. Ann Bot 101:89–102

    Article  PubMed  CAS  Google Scholar 

  49. McCormick AJ, Cramer MD, Watt DA (2008) Regulation of photosynthesis by sugars in sugarcane leaves. J Plant Physiol. doi:10.1016/j.jplph.2008.01.008

  50. Minchin PEH, Thorpe MR, Farrar JF, Koroleva OA (2002) Source–sink coupling in young barley plants and control of phloem loading. J Exp Bot 53:1671–1676

    Article  PubMed  CAS  Google Scholar 

  51. Müller R, Morant M, Jarmer H, Nilsson L, Nielsen TH (2007) Genome-wide analysis of the Arabidopsis transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol 143:156–171

    Article  PubMed  CAS  Google Scholar 

  52. Nielsen TH, Krapp A, Röber-Schwarz U, Stitt M (1998) The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen. Plant Cell Environ 21:443–454

    Article  CAS  Google Scholar 

  53. Paul MJ (2007) Trehalose 6-phosphate. Curr Opin Plant Biol 10:303–309

    Article  PubMed  CAS  Google Scholar 

  54. Paul MJ, Driscoll SP (1997) Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source:sink imbalance. Plant Cell Environ 20:110–116

    Article  CAS  Google Scholar 

  55. Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1381–1400

    Article  Google Scholar 

  56. Paul MJ, Pellny TK (2003) Carbon metabolite feedback regulation of leaf photosynthesis and development. J Exp Bot 54:539–547

    Article  PubMed  CAS  Google Scholar 

  57. Paul MJ, Pellny TK, Goddijn IJM (2001) Enhancing photosynthesis with sugar signals. Trends Plant Sci 6:197–200

    Article  PubMed  CAS  Google Scholar 

  58. Pego JV, Kortsee AJ, Huijser C, Smeekens SCM (2000) Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51:407–416

    Article  PubMed  CAS  Google Scholar 

  59. Pellny TK, Ghannoum O, Conroy JP, Schluepmann H, Smeekens S, Andralojc J, Krause KP, Goddijn O, Paul MJ (2004) Genetic modification of photosynthesis with E. coli genes for trehalose synthesis. Plant Biotechnol 2:71–82

    Article  CAS  Google Scholar 

  60. Pieters AJ, Paul MJ, Lawlor DW (2001) Low sink demand limits photosynthesis under Pi deficiency. J Exp Bot 52:1083–1091

    Article  PubMed  CAS  Google Scholar 

  61. Prioul JL, Reyss A (1988) Rapid variations in the content of the RNA of the small subunit of ribulose-1,5-bisphosphate carboxylase of mature tobacco leaves in response to localized changes in light quantity. Relationships between the activity and quantity of the enzyme. Planta 174:488–494

    Article  CAS  Google Scholar 

  62. Ramon M, Rolland F (2007) Plant development: introducing trehalose metabolism. Trends Plant Sci 12:185–188

    Article  PubMed  CAS  Google Scholar 

  63. Rodermel S, Haley J, Jiang CZ, Tsai CH, Bogorad L (1996) A mechanism for intergenomic integration: abundance of ribulose bisphosphate carboxylase small-subunit protein influences the translation of the large-subunit mRNA. Proc Natl Acad Sci USA 93:3881–3885

    Article  PubMed  CAS  Google Scholar 

  64. Roitsch T, Balibrea ME, Hofmann M, Proeis R, Sinna AK (2003) Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54:513–524

    Article  PubMed  CAS  Google Scholar 

  65. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  66. Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:185–205

    Google Scholar 

  67. Sawers RJH, Liu P, Anufrikova K, Hwang JT, Brutnell TP (2007) A multi-treatment experimental system to examine photosynthetic differentiation in the maize leaf. BMC Genomics 8:1–13

    Article  CAS  Google Scholar 

  68. Schäfer C, Simper H, Hofmann B (1992) Glucose feeding results in co-ordinated changes of chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and photosynthetic potential in photoautotrophic suspension-cultured cells of Chenopodium rubrum. Plant Cell Environ 15:343–350

    Article  Google Scholar 

  69. Schluepmann H, van Dijken A, Smeekens S, Paul M (2003) Trehalose-6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6849–6854

    Article  PubMed  CAS  Google Scholar 

  70. Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Plant Physiol Plant Mol Biol 51:49–81

    Article  PubMed  CAS  Google Scholar 

  71. Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 147:637–646

    Article  CAS  Google Scholar 

  72. Stitt M, Quick WP (1989) Photosynthetic carbon partitioning: its regulation and possibilities for manipulation. Physiol Plant 77:633–641

    Article  CAS  Google Scholar 

  73. Stitt M, Gibon Y, Lunn JE, Piques M (2007) Multilevel genomics analysis of carbon signalling during low carbon availability: coordinating the supply and utilization of carbon in a fluctuating environment. Funct Plant Biol 34:526–549

    Article  CAS  Google Scholar 

  74. Tiessen A, Prescha K, Branscheid A, Palacios N, McKibbin R, Halford NG, Geigenberger P (2003) Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers. Plant J 35:490–500

    Article  PubMed  CAS  Google Scholar 

  75. Toroser D, Plaut Z, Huber SC (2000) Regulation of a plant SNF1-related protein kinase by glucose-6-phosphate. Plant Physiol 123:403–411

    Article  PubMed  CAS  Google Scholar 

  76. Van Oosten JJ, Besford RT (1994) Sugar feeding mimics effect of acclimation to high CO2: rapid downregulation of RuBisCO small subunit transcripts, but not of the large subunit transcripts. J Plant Physiol 143:306–312

    Google Scholar 

  77. Watt DA, McCormick AJ, Govender C, Carson DL, Cramer MD, Huckett BI, Botha FC (2005) Increasing the utility of genomics in unraveling sucrose accumulation. Field Crops Res 92:149–158

    Article  Google Scholar 

  78. Williams LE, Lemoine R, Sauer N (2000) Sugar transporters in higher plants—a diversity of roles and complex regulation. Trends Plant Sci 5:283–290

    Article  PubMed  CAS  Google Scholar 

  79. Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5:109–117

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for funding provided by the South African Sugarcane Research Institute, SA Sugar Association Trust Fund for Education and the National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. McCormick.

Additional information

Communicated by Dr. Paul Moore

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

List of probe sets differentially expressed during the cold-girdling treatment. Putative identity was assigned using the BLASTX function within the National Centre of Biotechnological Information (NCBI) GenBank database (http://www.ncbi.nlm.nih.gov). Where E values are absent, probe sets homology was matched to those assigned by Casu et al. [12]. Fold changes indicate statistical significance values (P < 0.05) as determined by ANOVA (n = 4) (XLS 128 KB)

Fig. 1

Normalised gene expression profile comparison between cold-girdled (56 h) and control leaves. Up- and down-regulation of genes in controls (n = 4) is seen in red and blue, respectively, whereas the reverse applies for the cold-girdled leaves. Genes that remain unaffected by the treatment are depicted in yellow (GIF 2.24 MB)

Supplementary Fig. 1

High resolution image file (TIFF 495 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormick, A.J., Cramer, M.D. & Watt, D.A. Differential Expression of Genes in the Leaves of Sugarcane in Response to Sugar Accumulation. Tropical Plant Biol. 1, 142–158 (2008). https://doi.org/10.1007/s12042-008-9013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-008-9013-2

Keywords

Navigation