Skip to main content
Log in

Maltose is the major form of carbon exported from the chloroplast at night

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Transitory starch is formed in chloroplasts during the day and broken down at night. We investigated carbon export from chloroplasts resulting from transitory-starch breakdown. Starch-filled chloroplasts from spinach (Spinacia oleracea L. cv. Nordic IV) were isolated 1 h after the beginning of the dark period and incubated for 2.5 h, followed by centrifugation through silicone oil. Exported products were measured in the incubation medium to avoid measuring compounds retained inside the chloroplasts. Maltose and glucose made up 85% of the total exported products and were exported at rates of 626 and 309 nmol C mg−1 chlorophyll h−1, respectively. Net export of phosphorylated products was less than 5% and higher maltodextrins were not detected. Maltose levels in leaves of bean (Phaseolus vulgaris L. cv. Linden), spinach, and Arabidopsis thaliana (L.) Heynh. were low in the light and high in the dark. Maltose levels remained low and unchanged during the light/dark cycle in two starch-deficient Arabidopsis mutants, stf1, deficient in plastid phosphoglucomutase, and pgi, deficient in plastid phosphoglucoisomerase. Through the use of nonaqueous fractionation, we determined that maltose was distributed equally between the chloroplast and cytosolic fractions during darkness. In the light there was approximately 24% more maltose in the cytosol than the chloroplast. Taken together these data indicate that maltose is the major form of carbon exported from the chloroplast at night as a result of starch breakdown. We hypothesize that the hydrolytic pathway for transitory-starch degradation is the primary pathway used when starch is being converted to sucrose and that the phosphorolytic pathway provides carbon for other purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CAM:

crassulacean acid metabolism

Chl:

chlorophyll

DHAP:

dihydroxyacetone phosphate

FBPase:

fructose bisphosphatase

GAP:

glyceraldehyde-3-phosphate

G6P:

glucose 6-phosphate

PGA:

3-phosphoglycerate

TPT:

triose phosphate translocator

WT:

wild type

References

  • Boos W, Shuman H (1998) Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev 62:204–229

    CAS  PubMed  Google Scholar 

  • Bouma TJ, De Visser R, Van Leeuwen PJ, DeKock MJ, Lambers H (1995) The respiratory energy requirements involved in nocturnal carbohydrate export from starch-storing mature source leaves and their contribution to dark respiration. J Exp Bot 46:1185–1194

    CAS  Google Scholar 

  • Caspar T, Lin T-P, Monroe J, Bernhard W, Spilatro S, Preiss J, Somerville C (1989) Altered regulation of β-amylase activity in mutants of Arabidopsis with lesion in starch metabolism. Proc Natl Acad Sci USA 86:5830–5833

    CAS  Google Scholar 

  • Caspar T, Lin T-P, Kakefuda G, Benbow L, Preiss J, Somerville C (1991) Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiol 95:1181–1188

    CAS  Google Scholar 

  • Critchley J, Zeeman S, Takaha T, Smith AM, Smith SM (2001) A critical role for disproportionating enzyme in starch breakdown is revealed by a knockout mutation in Arabidopsis thaliana. Plant J 26:89–100

    Article  CAS  PubMed  Google Scholar 

  • Flügge U-I (1999) Phosphate translocators in plastids. Annu Rev Plant Physiol Plant Mol Biol 50:27–45

    Google Scholar 

  • Flügge U-I, Heldt HW (1991) Metabolite translocators of the chloroplast envelope. Annu Rev Plant Physiol Plant Mol Biol 42:129–144

    Article  Google Scholar 

  • Gerhardt R, Heldt HW (1984) Measurement of subcellular metabolite levels in leaves by fractionation of freeze-stopped material in nonaqueous media. Plant Physiol 75:542–547

    Google Scholar 

  • Hattenbach A, Müller-Röber B, Nast G, Heineke D (1997) Antisense repression of both ADP-glucose pyrophosphorylase and triose phosphate translocator modifies carbohydrate partitioning in leaves. Plant Physiol 115:471–475

    CAS  PubMed  Google Scholar 

  • Häusler RE, Schlieben NH, Schulz B, Flügge U-I (1998) Compensation of decreased triose phosphate/phosphate translocator activity by accelerated starch turnover and glucose transport in transgenic tobacco. Planta 204:366–376

    Article  PubMed  Google Scholar 

  • Häusler RE, Schlieben NH, Nicolay P, Fischer K, Fischer KL, Flügge U-I (2000a) Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum L.) I. Comparative physiological analysis of tobacco plants with antisense repression and overexpression of the triose phosphate/phosphate translocator. Planta 210:371–382

    PubMed  Google Scholar 

  • Häusler RE, Schlieben NH, Flügge U-I (2000b) Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum L.) II. Assessment of control coefficients of the triose phosphate/phosphate translocator. Planta 210:383–390

    PubMed  Google Scholar 

  • Heineke D, Kruse A, Flügge U-I, Frommer WB, Riesmeier JW, Willmitzer L, Heldt HW (1994) Effect of antisense repression of the chloroplast translocator on photosynthesis metabolism in transgenic potato plants. Planta 193:174–180

    CAS  Google Scholar 

  • Heldt HW, Chon CJ, Maronde D, Herold A, Stankovic ZS, Walker DA, Kraminer A, Kirk MR, Heber U (1977) Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts. Plant Physiol 59:1146–1155

    CAS  Google Scholar 

  • Herold A, Leegood RC, McNeil PH, Robinson SP (1981) Accumulation of maltose during photosynthesis in protoplasts isolated from spinach leaves treated with mannose. Plant Physiol 67:85–88

    CAS  Google Scholar 

  • Kakefuda G, Duke SH (1989) Characterization of pea chloroplast D-enzyme (4-α-d-glucanotransferase. Plant Physiol 91:136–143

    CAS  Google Scholar 

  • Kakefuda G, Duke SH, Hostak MS (1986) Chloroplast and extrachloroplastic starch-degrading enzymes in Pisum sativum L.. Planta 168:17–182

    Google Scholar 

  • Kammerer B, Fischer K, Hilpert B, Schubert S, Gutensohn M, Weber A, Flügge U-I (1998) Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate phosphate antiporter. Plant Cell 10:105–117

    CAS  PubMed  Google Scholar 

  • Kofler H, Häusler RE, Schulz B, Gröner F, Flügge UI, Weber A (2000) Molecular characterisation of a new mutant allele of the plastidic phosphoglucomutase and complementation of the mutant with the wild-type cDNA. Mol Genet Genomics 263:978–986

    CAS  Google Scholar 

  • Kruger NJ, ap Rees T (1983) Maltose metabolism by pea chloroplasts. Planta 158:179–184

    CAS  Google Scholar 

  • Laby RJ, Kim D, Gibson SI (2001) The ram1 mutant of Arabidopsis exhibits severely decreased β-amylase activity. Plant Physiol 127:1798–1807

    Article  CAS  PubMed  Google Scholar 

  • Lao NT, Schoneveld O, Mould RM, Hibberd JM, Gray JC, Kavanagh TA (1999) An Arabidopsis gene encoding a chloroplast-targeted β-amylase. Plant J 20:519–527

    Article  CAS  PubMed  Google Scholar 

  • Leidreiter K, Heineke D, Heldt HW, Müller-Röber B (1995a) Leaf-specific antisense inhibition of starch biosynthesis in transgenic potato plants leads to an increase in photoassimilate export from source leaves during the light period. Plant Cell Physiol 36:615–624

    CAS  Google Scholar 

  • Leidreiter K, Kruse A, Heineke D, Robinson DG, Heldt HW (1995b) Subcellular volumes and metabolite concentrations in potato (Solanum tuberosum cv désirée) leaves. Bot Acta 108:439–444

    CAS  Google Scholar 

  • Levi C, Gibbs M (1976) Starch degradation in isolated chloroplasts. Plant Physiol 57:933–935

    Google Scholar 

  • Levi C, Preiss J (1978) Amylopectin degradation in pea chloroplast extracts. Plant Physiol 61:218–220

    CAS  Google Scholar 

  • Lowry OH, Passonneau JV (1972) A flexible system of enzymatic analysis. Academic Press, Orlando, pp 1–291

  • Lu Y, Sharkey TD (2003) The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta DOI 10.1007/s00425-003-1127-z

  • Neuhaus HE, Schulte N (1996) Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L.. Biochem J 318:945–953

    CAS  PubMed  Google Scholar 

  • Peavey DG, Steup M, Gibbs M (1977) Characterization of starch breakdown in the intact spinach chloroplast. Plant Physiol 60:305–308

    CAS  Google Scholar 

  • Riesmeier JW, Flügge U, Schulz B, Heineke D, Heldt HW, Willmitzer L, Frommer WB (1993) Antisense repression of the chloroplast triose phosphate translocator affects carbon partitioning in transgenic potato plants. Proc Natl Acad Sci USA 90:6160–6164

    CAS  PubMed  Google Scholar 

  • Ritte G, Raschke K (2003) Metabolite export of isolated guard cell chloroplasts of Vicia faba. New Phytol 159:195–202

    Article  CAS  Google Scholar 

  • Ritte G, Lloyd JR, Eckermann N, Rottmann A, Kossmann J, Steup M (2002) The starch-related R1 protein is an alpha-glucan, water dikinase. Proc Natl Acad Sci USA 99:7166–7171

    Article  CAS  PubMed  Google Scholar 

  • Rost S, Frank C, Beck E (1996) The chloroplast envelope is permeable for maltose but not for maltodextrins. Biochim Biophys Acta 1291:221–227

    Article  CAS  PubMed  Google Scholar 

  • Schäfer G, Heber U, Heldt HW (1977) Glucose transport into spinach chloroplasts. Plant Physiol 60:286–289

    Google Scholar 

  • Scheidig A, Fröhlich A, Schulze S, Lloyd JR, Kossmann J (2002) Downregulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. Plant J 30:581–591

    Article  CAS  PubMed  Google Scholar 

  • Schleucher J, Vanderveer PJ, Sharkey TD (1998) Export of carbon from chloroplasts at night. Plant Physiol 118:1439–1445

    CAS  PubMed  Google Scholar 

  • Schneider A, Häusler RE, Kolukisaoglu Ü, Kunze R, van der Graaff E, Schwacke R, Catoni E, Desimone M, Flügge U-I (2002) An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished. Plant J 32:685–699

    Article  CAS  PubMed  Google Scholar 

  • Scott P, Kruger NJ (1994) Fructose-2,6-bisphospahte levels in mature leaves of tobacco (Nicotiana tabacum) and potato (Solanum tuberosum). Planta 193:16–20

    CAS  Google Scholar 

  • Servaites JC, Geiger D (2002) Kinetic characteristics of chloroplast glucose transport. J Exp Bot 53:1–11

    PubMed  Google Scholar 

  • Servaites JC, Geiger DR, Tucci MA, Fondy B (1989) Leaf carbon metabolism and metabolite levels during a period of sinusoidal light. Plant Physiol 89:403–408

    CAS  Google Scholar 

  • Sharkey TD, Vanerveer PJ (1989) Stromal phosphate concentration is low during feedback limited photosynthesis. Plant Physiol 91:679–684

    CAS  Google Scholar 

  • Sharkey TD, Savitch LV, Vanderveer PJ, Micallef BJ (1992) Carbon partitioning in a Flaveria linearis mutant with reduced cytosolic fructose bisphosphatase. Plant Physiol 100:210–215

    CAS  Google Scholar 

  • Shirokane Y, Ichikawa K, Suzuki M (2000) A novel enzymic determination of maltose. Carbohydr Res 329:699–702

    Article  CAS  PubMed  Google Scholar 

  • Stitt M (1990) Fructose-2,6-bisphosphate in plants. Annu Rev Plant Physiol 41:153–185

    CAS  Google Scholar 

  • Stitt M, ap Rees T (1979) Capacities of pea chloroplasts to catalyse the oxidative pentose phosphate pathway and glycolysis Phytochemistry 18:1905–1911

    Article  CAS  Google Scholar 

  • Stitt M, ap Rees T (1980) Carbohydrate breakdown by chloroplasts of Pisum sativum. Biochim Biophys Acta 627:131–143

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Heldt HW (1981) Physiological rates of starch breakdown in isolated intact spinach chloroplasts. Plant Physiol 68: 755–761

    CAS  Google Scholar 

  • Stitt M, Bulpin PV, ap Rees T (1978) Pathway of starch breakdown in photosynthetic tissues of Pisum sativum. Biochim Biophys Acta 544:200–214

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Wirtz W, Heldt HW (1981) Metabolite levels during induction in the chloroplast and extrachloroplast compartments of spinach protoplasts. Biochim Biophys Acta 593:85–102

    Google Scholar 

  • Stitt M, Wirtz W, Gerhardt R, Heldt HW, Spencer C, Walker D, Foyer C (1985) A comparative study of metabolite levels in plant leaf material in the dark. Planta 166:354–364

    CAS  Google Scholar 

  • Sun ZT, Duke SH, Henson CA (1995) The role of pea chloroplast alpha-glucosidase in transitory starch degradation. Plant Physiol 108:211–217

    CAS  PubMed  Google Scholar 

  • Trethewey RN, ap Rees T (1994) The role of the hexose transporter in the chloroplasts of Arabidopsis thaliana L. Planta 195:168–174

    CAS  Google Scholar 

  • Usuda H, Kalt-Torres W, Kerr PS, Huber SC (1987) Diurnal changes in maize leaf photosynthesis. II. Levels of metabolic intermediates of sucrose synthesis and the regulatory metabolite fructose 2,6-bisphosphate. Plant Physiol 83:289–293

    CAS  Google Scholar 

  • Weber A, Servaites JC, Geiger DR, Kofler H, Hille D, Gröner F, Hebbeker U, Flügge U-I (2000) Identification, purification, and molecular cloning of a putative plastidic glucose translocator. Plant Cell 12:787–801

    Article  CAS  PubMed  Google Scholar 

  • Wiese A, Gröner F, Sonnewald U, Deppner H, Lerchl J, Hebbeker U, Flügge U-I, Weber A (1999) Spinach hexokinase I is located in the outer envelope membrane of plastids. FEBS Lett 461:13–18

    CAS  PubMed  Google Scholar 

  • Winter H, Robinson DG, Heldt HW (1993) Subcellular volumes and metabolite concentrations in barley leaves. Planta 191:180–190

    CAS  Google Scholar 

  • Winter H, Robinson DG, Heldt HW (1994) Subcellular volumes and metabolite concentrations in spinach leaves. Planta 193:530–535

    CAS  Google Scholar 

  • Yu T-S, Lue W-L, Wang S-M, Chen J (2000) Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation. Plant Physiol 123:319–325

    Article  CAS  PubMed  Google Scholar 

  • Yu T-S, Kofler H, Häusler RE, Hille D, Flügge U-I, Zeeman SC, Smith AM, Kossmann J, Lloyd J, Ritte G, Steup M, Lue W-L, Chen J, Weber A (2001) The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation In plants, and not in the chloroplast hexose transporter. Plant Cell 13:1907–1918

    Article  CAS  PubMed  Google Scholar 

  • Zeeman SC, ap Rees T (1999) Changes in carbohydrate metabolism and assimilate export in starch-excess mutants of Arabidopsis. Plant Cell Environ 22:1445–1453

    Article  CAS  Google Scholar 

  • Zeeman SC, Northrop F, Smith AM, ap Rees T (1998) A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolysing enzyme Plant J 5:357–365

    Google Scholar 

  • Zrenner R, Krause KP, Apel P, Sonnewald U (1996) Reduction of the cytosolic fructose-1,6-bisphosphatase in transgenic potato plants limits photosynthetic sucrose biosynthesis with no impact on plant growth and tuber yield. Plant J 9:671–681

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the US Department of Energy under grant DE-FG02-99ER 20345. S.E.W. was supported in part by the Wisconsin Center for Space Automation and Robotics of UW-Madison. We thank Peter Vanderveer for help in starting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Sharkey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weise, S.E., Weber, A.P.M. & Sharkey, T.D. Maltose is the major form of carbon exported from the chloroplast at night. Planta 218, 474–482 (2004). https://doi.org/10.1007/s00425-003-1128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1128-y

Keywords

Navigation