Skip to main content
Log in

Evolution of the Genes Encoding Seed Storage Proteins in Sugarcane and Maize

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Prolamins, the seed storage proteins of maize, sorghum and coix were also found in sugarcane. Prolamins are grouped into structurally distinct classes termed the α-, β-, γ- and δ-prolamins. Orthologues for almost all of the α-, β-, γ- and δ-prolamins classes were identified in sugarcane. In maize, there are two molecular weight classes of α-prolamins, the 22 and 19 kD α-zeins. Sugarcane also possesses both the 22 kD and the 19 kD α-prolamins, which we denote as caneins, whereas sorghum and coix contain only the 22 kD α-prolamin (α-kafirin and α-coixin, respectively). Amino acid sequence alignments of the 22 and 19 kD α-prolamins from these plants revealed that both the 19 kD α-zein and the 19 kD α-canein lack around 20 amino acids at the sixth α-helix domain. We postulate that the 19 kD α-prolamins originated from a deletion of the sixth α-helix of a 22 kD counterpart in the saccharum lineage. Saccharum and sorghum diverged around five to nine million years ago (Mya), when only the 22 kD α-prolamins existed. The 19 kD α-canein must therefore have emerged after this time. Sorghum possesses a 19 kD α-prolamin similar to that of sugarcane and maize, but it contains the sixth α-helix domain lacking in the 19 kD α-zein and the 19 kD α-canein. This sorghum α-prolamin that we called 19 kD-like α-kafirin must be the ancestor of the 19 kD α-canein. The 19 kD-like α-kafirin could also be the ancestor of the 19 kD α-zein but it is also possible that the genes encoding the 19 kD α-zein and the 19 kD α-canein have evolved separately in these close groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Al-Janabi SM, Honeycutt RJ, Peterson C et al (1994) Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharum. Theor Appl Genet 88:933–944

    Article  CAS  Google Scholar 

  2. Argos P, Pedersen K, Marks MD, Larkins BA (1982) A structural model for maize zein proteins. J Biol Chem 257:9984–9990

    PubMed  CAS  Google Scholar 

  3. Bietz JA (1982) Cereal prolamin evolution and homology revealed by sequence-analysis. Biochem Gen 20:1039–1053

    Article  CAS  Google Scholar 

  4. Bomblies K, Doebley JF (2005) Molecular evolution of Floricaula/Leafy orthologs in the Andropogoneae (Poaceae). Mol Biol Evol 22:1082–94

    Article  PubMed  CAS  Google Scholar 

  5. Coleman CE, Clore AM, Ranch JP et al (1997) Expression of a mutant α-zein creates the floury2 phenotype in transgenic maize. Proc Natl Acad Sci USA 94:7094–7097

    Article  PubMed  CAS  Google Scholar 

  6. Coleman CE, Larkins BA (1999) The prolamins of maize. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic Publishers, Dordrecht, Netherlands

    Google Scholar 

  7. DeFreitas FA, Yunes JA, DaSilva MJ et al (1994) Structural characterization and promoter activity analysis of the gamma-kafirin gene from sorghum. Mol Gen Genet 245:177–186

    Article  CAS  Google Scholar 

  8. DeRose RT, Ma DP, Kwon IS et al (1989) Characterization of the kafirin gene family from sorghum reveals extensive homology with zein from maize. Plant Mol Biol 12:245–256

    Article  CAS  Google Scholar 

  9. D'Hont A, Ison D, Alix K et al (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41(2):221–225

    Article  Google Scholar 

  10. Esen A (1987) Proposed nomenclature for the alcohol-soluble proteins (zeins) of maize (Zea mays l.). J Cereal Sci 5:117–128

    Article  CAS  Google Scholar 

  11. FAO (http://www.faostat.fao.org)

  12. Garrat R, Oliva G, Caracelli I et al (1993) Studies of the a-prolamins based on an analysis of amino acid sequences: implications for their evolution and three-dimensional structure. Proteins 15:88–99

    Article  Google Scholar 

  13. Grivet L, Arruda P (2001) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127

    Article  Google Scholar 

  14. Holding DR, Larkins BA (2006) The development and importance of zein protein bodies in maize endosperm. Maydica 51:243–254

    Google Scholar 

  15. Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  16. Jannoo N, Grivet L, Chantret N et al (2007) Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J 50:574–585

    Article  PubMed  CAS  Google Scholar 

  17. Kellog EA (2001) Evolutionary history of grasses. Plant Physiol 125:1198–120

    Article  Google Scholar 

  18. Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  19. Larkins BA, Pedersen K, Marks MD et al (1984) The zein proteins of maize endosperm. TIBS 9:306–308

    CAS  Google Scholar 

  20. Leite A, Cord-neto G, Vettore AL et al (1999) The prolamins of sorghum, coix and millets. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic Publishers, Dordrecht, Netherlands

    Google Scholar 

  21. Lukens L, Doebley J (2001) Molecular evolution of the teosinte branched gene among maize and related grasses. Mol Biol Evol 18:627–38

    PubMed  CAS  Google Scholar 

  22. Ottoboni LMM, Leite A, Targon MLN et al (1990) Characterization of the storage protein in seed of Coix-lacryma-jobi var. Adlay. J Agricult Food Chem 38:631–635

    Article  CAS  Google Scholar 

  23. Ottoboni LMM, Leite A, Yunes JA et al (1993) Sequence analysis of 22 kd-like α-prolamin genes from coix, maize and sorghum reveals a highly conserved protein structure and regulatory elements. Plant Mol Biol 21:765–778

    Article  PubMed  CAS  Google Scholar 

  24. Pelger S, Bothmer R (1992) Hordein variation in the genus Hordeum as recognized by monoclonal antibodies. Genome 35:200–207

    PubMed  CAS  Google Scholar 

  25. Shewry PR, Tatham AS (1990) The prolamin storage proteins of cereal seeds - structure and evolution. Biochem J 267:1–12

    PubMed  CAS  Google Scholar 

  26. Shewry PR (1995) Plant storage proteins. Biol Rev 70:375–426

    Article  PubMed  CAS  Google Scholar 

  27. Shewry PR (1999) Avenins: The prolamins of oats. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer Academic Publishers, Dordrecht, Netherlands

    Google Scholar 

  28. Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 370:947–958

    Article  Google Scholar 

  29. Song R, Llaca V, Messing J (2002) Mosaic Organization of orthologous sequences in grass genomes. Genome Res 2:1549–1555

    Article  CAS  Google Scholar 

  30. Spangler R, Zaitchik B, Russo E et al (1999) Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Syst Bot 24:267–281

    Article  Google Scholar 

  31. Swigonova Z, Lai J, Ma J et al (2004a) On the tetraploid origin of maize genome. Comp Funct Genom 5:281–284

    Article  CAS  Google Scholar 

  32. Swigonova Z, Lai J, Ma J et al (2004b) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    Article  PubMed  CAS  Google Scholar 

  33. Tekezaki N, Rzhetsky A, Nei M (1995) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12:823–833

    Google Scholar 

  34. Vettore AL, da Silva FR, Kemper EL et al (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735

    Article  PubMed  Google Scholar 

  35. Wolf KH, Gouy M, Yang YM et al (1989) Date of the monocot–dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:6201–6205

    Article  Google Scholar 

  36. Woo YM, Hu DWN, Larkins BA et al (2001) Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. Plant Cell 13:2297–231

    Article  PubMed  CAS  Google Scholar 

  37. Yunes JA, Neto GC, DaSilva MJ et al (1994) The transcriptional activator opaque 1 recognizes 2 different target sequences in the 22 KD-like alpha prolamins genes. Plant Cell 6:237–249

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Laudiene Meyer and Jiri Borecky, for the help in the protein analysis. Guilherme Serrano and Thais Rezende e Silva Figueira were supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Arruda.

Additional information

Communicated by: Paulo Arruda

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

PDF (1.59 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueira, T.R.e.S., de Mello Serrano, G.C. & Arruda, P. Evolution of the Genes Encoding Seed Storage Proteins in Sugarcane and Maize. Tropical Plant Biol. 1, 108–119 (2008). https://doi.org/10.1007/s12042-008-9009-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-008-9009-y

Keywords

Navigation