Skip to main content
Log in

Evolution of the defensin-like gene family in grass genomes

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Plant defensins are small, diverse, cysteine-rich peptides, belonging to a group of pathogenesis-related defense mechanism proteins, which can provide a barrier against a broad range of pathogens. In this study, 51 defensin-like (DEFL) genes in Gramineae, including brachypodium, rice, maize and sorghum were identified based on bioinformatics methods. Using the synteny analysis method, we found that 21 DEFL genes formed 30 pairs of duplicated blocks that have undergone large-scale duplication events, mostly occurring between species. In particular, some chromosomal regions are highly conserved in the four grasses. Using mean K s values, we estimated the approximate time of divergence for each pair of duplicated regions and found that these regions generally diverged more than 40 million years ago (Mya). Selection pressure analysis showed that the DEFL gene family is subjected to purifying selection. However, sliding window analysis detected partial regions of duplicated genes under positive selection. The evolutionary patterns within DEFL gene families among grasses can be used to explore the subsequent functional divergence of duplicated genes and to further analyse the antimicrobial effects of defensins during plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aerts A. M., François I. E. J. A., Cammue B. P. A. and Thevissen K. 2008 The mode of antifungal action of plant, insect and human defensins. Cell Mol. Life Sci. 65, 2069–2079.

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen J. L. 2000 Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12, 1021–1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertioli D. J., Moretzsohn M. C., Madsen L. H., Sandal N., Leal-Bertioli S. C., Guimarães P. M. et al. 2009 An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics 10, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blanc G. and Wolfe K. H. 2004 Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16, 1667–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers J. E., Chapman B. A, Rong J. and Paterson A. H. 2003 Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho Ade O. and Gomes V. M. 2009 Plant defensins—prospects for the biological functions and biotechnological properties. Peptides 30, 1007–1020.

    Article  PubMed  Google Scholar 

  • Devos K. M. and Gale M. D. 2000 Genome relationships: the grass model in current research. Plant Cell 12, 637–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gale M. D. and Devos K. M. 1998 Plant comparative genetics after 10 years. Science 282, 656–659.

    Article  CAS  PubMed  Google Scholar 

  • Gaut B. S., Morton B. R., McCaig B. C. and Clegg M. T. 1996 Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl. Acad. Sci. USA 93, 10274–10279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaut B. S. and Doebley J. F. 1997 DNA sequence evidence for the segmental allotetraploid origin of maize. Proc. Natl. Acad. Sci. USA 94, 6809–6814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giacomelli L., Nanni V., Lenzi L., Zhuang J., Serra M. D., Banfield M. J. et al. 2012 Identification and characterization of the defensin-like gene family of grapevine. Mol. Plant Microbe Interact. 25, 1118–1131.

    Article  CAS  PubMed  Google Scholar 

  • Graham M. A., Silverstein K. A., Cannon S. B. and VandenBosch K. A. 2004 Computational identification and characterization of novel genes from legumes. Plant Physiol. 135, 1179–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller B. and Feuillet C. 2000 Colinearity and gene density in grass genomes. Trends Plant Sci. 5, 246–251.

    Article  CAS  PubMed  Google Scholar 

  • Kellogg E. A. 2001 Evolutionary history of the grasses. Plant Physiol. 125, 1198–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawton-Rauh A. 2003 Evolutionary dynamics of duplicated genes in plants. Mol. Phylogenet. Evol. 29, 396–409.

    Article  CAS  PubMed  Google Scholar 

  • Lay F. T. and Anderson M. A. 2005 Defensins—components of the innate immune system in plants. Curr. Protein Pept. Sci. 6, 85–101.

    Article  CAS  PubMed  Google Scholar 

  • Li Z., Jiang H., Zhou L., Deng L., Lin Y., Peng X. et al. 2014 Molecular evolution of the HD-ZIP I gene family in legume genomes. Gene 533, 218–228.

    Article  CAS  PubMed  Google Scholar 

  • Librado P. and Rozas J. 2009 DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  • Maher C, Stein L. and Ware D. 2006 Evolution of Arabidopsis microRNA families through duplication events. Genome Res. 16, 510–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer B., Houlne G., Pozueta-Romero J., Schantz M. L. and Schantz R. 1996 Fruit-specific expression of a defensin-type gene family in bell pepper. Upregulation during ripening and upon wounding. Plant Physiol. 112, 615–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M. R., Khandelwal C. B., Yadav V. S., Bonthala Y. Khan and Prasad M. 2014 Identification and molecular characterization of MYB transcription factor superfamily in C4 model plant foxtail millet (Setaria italica L.) PLoS One 9, e109920.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nei M. and Gojobori T 1986 Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426.

    CAS  PubMed  Google Scholar 

  • Paterson A. H., Bowers J. E., Burow M. D., Draye X., Elsik C. G., Jiang C. X. et al. 2000 Comparative genomics of plant chromosomes. Plant Cell 12, 1523–1540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson A. H., Bowers J. E. and Chapman B. A. 2004 Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Natl. Acad. Sci. USA 101, 9903–9908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prema G. and Pruthvi T. 2012 Antifungal plant defensins. Curr. Biotica 6, 254–270.

    Google Scholar 

  • SanMiguel P., Gaut B. S., Tikhonov A., Nakajima Y. and Bennetzen J. L. 1998 The paleontology of intergene retrotransposons of maize. Nat. Genet. 20, 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Sato S., Nakamura Y., Kaneko T., Asamizu E., Kato T., Nakao M. et al. 2008 Genome structure of the legume, Lotus japonicus . DNA Res. 15, 227–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstein K. A., Graham M. A., Paape T. D. and VandenBosch K. A. 2005 Genome organization of more than 300 defensin-like genes in Arabidopsis. Plant Physiol.. 138, 600–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstein K. A., Moskal W. A. Jr., Wu H. C., Underwood B. A., Graham M. A. et al. 2007 Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J. 51, 262–280.

    Article  CAS  PubMed  Google Scholar 

  • Stotz H. U, Thomson J. G. and Wang Y 2009 Plant defensins: defense, development and application. Plant Signal Behav. 4, 1010–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swigonova Z., Lai J. S., Ma J. X., Ramakrishna W., Llaca V., Bennetzen J. L. and Messing J. 2004 Close split of sorghum and maize genome progenitors. Genome Res. 14 1916–1923.

  • Tamura K., Dudley J., Nei M. and Kumar S. 2007 MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Thomma B. P, Cammue B. P. and Thevissen K. 2002 Plant defensins. Planta 216, 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Thompson J. D, Gibson T. J. and Higgins D. G. 2002 Multiple sequence alignment using ClustalW and ClustalX.Curr. Protoc. Bioinformatics 2–3.

  • Vision T. J, Brown D. G. and Tanksley S. D. 2000 The origins of genomic duplications in Arabidopsis. Science 290, 2114–2117.

    Article  CAS  PubMed  Google Scholar 

  • Wang X., Shi X., Hao B., Ge S. and Luo J. 2005 Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol. 165 937–946.

  • Wei F., Coe E. D., Nelson W., Bharti A. K., Engler F., Beetler E. and Fuks G. 2007 Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet. 3, e123.

  • Yang D., Biragyn A., Hoover D. M., Lubkowski J. and Oppenheim J. J. 2004 Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. 22, 181–215.

Download references

Acknowledgements

This work was supported by the National Key Technologies Research and Development Programme of China (2012BAD20B00) and Anhui Provincial Natural Science Foundation (1408085MK L35). We would like to thank members of Key Laboratory of Crop Biology of Anhui province for their assistance in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QING MA.

Additional information

[Wu J., Jin X., Zhao Y., Dong Q., Jiang H. and Ma Q. 2016 Evolution of the defensin-like gene family in grass genomes. J. Genet. 95, xx–xx]

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.05 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

WU, J., JIN, X., ZHAO, Y. et al. Evolution of the defensin-like gene family in grass genomes. J Genet 95, 53–62 (2016). https://doi.org/10.1007/s12041-015-0601-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-015-0601-2

Keywords

Navigation