Skip to main content
Log in

A lanthanide cluster formed by fixing atmospheric CO2 to carbonate: a molecular magnetic refrigerant and photoluminescent material

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A lanthanide carboxylates cluster derived from 1,8-naphthalene dicarboxylate (NDC= 1,8 naphthalene dicarboxylate) and 1,10-phenanthroline (Phen) has been synthesized. The cluster of Sm(III) has been utilized for luminescence and magnetic refrigeration properties. Most interestingly, the auto immobilization of atmospheric carbon dioxide forms carbonate ion which acts as a bridging ligand and is positioned at the middle of the cluster. This cluster is characterized by different spectroscopic tools like FT-IR, photoluminescence spectrum, and the molecular structure [Sm4(NDC)5(Phen)4(µ4-CO3)(H2O)3].3H2O.CH3OH (1) is determined by single crystals X-ray diffraction. π-conjugated ligand (NDC=1,8-Naphthalene dicarboxylate; Phen=phenanthroline) affects both absorption and photoluminescence intensity. Moreover, from the χmT vs temperature plot, it is observed that there is an occurrence of antiferromagnetic interaction among the SmIII centers. The cluster possesses high magnetocaloric value at low temperature which offers itself as a potential candidate for cryogenic molecular magnetic refrigerant material. In addition, thermogravimetric analysis, Hirsh field surface area analysis, and the optical diffuse reflectance spectrum of this cluster is also described.

Graphical abstract

The synthesis, characterization, and magnetic properties of the Samarium cluster are described. The cluster is formed by the capturing of atmospheric CO2 in the form of carbonate ions which connects all four metal centers. The cluster exhibits a high magnetocaloric effect for which it can be used for molecular magnetic refrigerant material. Besides this, it can be a potential candidate for luminescent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Allen M R, Frame D J, Huntingford C, Jones C D, Lowe J A, Meinshausen M and Meinshausen N 2009 Warming caused by cumulative carbon emissions towards the trillionth tonne Nature 458 1163

    Article  CAS  PubMed  Google Scholar 

  2. Decortes A, Castilla A M and Kleij A W 2010 Salen-Complex-Mediated Formation of Cyclic Carbonates by Cycloaddition of CO2 to Epoxides Angew. Chem. Int. Ed. 49 9822

    Article  CAS  Google Scholar 

  3. Langley S K, Moubaraki B and Murray K S 2012 Magnetic properties of hexanuclear lanthanide(III) clusters incorporating a central μ6-carbonate ligand derived from atmospheric CO2 fixation Inorg. Chem. 51 3947

    Article  CAS  PubMed  Google Scholar 

  4. He L, Nath J K and Lin Q 2019 Robust multivariate metal–porphyrin frameworks for efficient ambient fixation of CO2 to cyclic carbonates Chem. Commun. 55 412

    Article  CAS  Google Scholar 

  5. Kitajima N, Fujisawa K, Koda T, Hikichi S and Moro-oka Y 1990 Fixation of atmospheric CO2 by a copper(II) complex J. Chem. Soc. Chem. Commun. 26 1357

    Article  Google Scholar 

  6. Zhang B, Zheng X, Su H, Zhu Y, Du C and Song M 2013 Efficient fixation of atmospheric CO2 as carbonate by lanthanide-based complex via synergistic effect of zinc ion Dalton Trans. 42 8571

    Article  CAS  PubMed  Google Scholar 

  7. Maity S, Ghosh T K, Ito S, Bhunia P, Ishida T and Ghosh A 2022 Structures and Magnetic Properties of Carbonato-Bridged Hexanuclear NiII4LnIII2 (Ln = Gd, Tb, Dy) Complexes Formed by Atmospheric Carbon Dioxide Fixation in the Absence of an External Base Cryst. Growth Des. 22 4332

    Article  CAS  Google Scholar 

  8. Bag P, Dutta S, Biswas P, Maji S K, Ulrich Flörke U and Nag K 2012 Fixation of carbon dioxide by macrocyclic lanthanide(III) complexes under neutral conditions producing self-assembled trimeric carbonato-bridged compounds with μ3222 bonding Dalton Trans. 41 3414

    Article  CAS  PubMed  Google Scholar 

  9. Tang X-L, Wang W-H, Dou W, Jiang J, Liu W-S, Qin W-W, et al. 2009 Olive-shaped chiral supramolecules: simultaneous self-assembly of heptameric lanthanum clusters and carbon dioxide fixation Angew. Chem. Int. Ed. 48 3499

    Article  CAS  Google Scholar 

  10. Bian S-D, Jia J-H and Wang Q-M 2009 High-Nuclearity Silver Clusters Templated by Carbonates Generated from Atmospheric Carbon Dioxide Fixation J. Am. Chem. Soc. 113 3422

    Article  Google Scholar 

  11. Tanase T, Nitta S, Yoshikawa S, Kobayashi K, Sakurai T and Yano S 1992 Spontaneous fixation of carbon dioxide in air by a nickel diamine complex: synthesis and characterization of a trinuclear nickel(II) complex with a novel hydrogen bonding system around a carbonate ligand Inorg. Chem. 31 1058

    Article  CAS  Google Scholar 

  12. Zhang P, Zhang L, Lin S and –Y and Tang J 2013 Tetranuclear [MDy]2 Compounds and Their Dinuclear [MDy] (M = Zn/Cu) Building Units: Their Assembly, Structures, and Magnetic Properties Inorg. Chem. 52 6595

    Article  CAS  PubMed  Google Scholar 

  13. Titos-Padilla S, Ruiz J, Herrera J M, Brechin E K, Wersndorfer W, Lloret F and Colacio E 2013 Dilution-Triggered SMM Behavior under Zero Field in a Luminescent Zn2Dy2 Tetranuclear Complex Incorporating Carbonato-Bridging Ligands Derived from Atmospheric CO2 Fixation Inorg. Chem. 52 9620

    Article  CAS  PubMed  Google Scholar 

  14. Sakamoto S, Fujinami T, Nishi K, Matsumoto N, Mochida N, Ishida T, et al. 2013 Carbonato-Bridged NiII2LnIII2 (LnIII = GdIII, TbIII, DyIII) Complexes Generated by Atmospheric CO2 Fixation and Their Single-Molecule-Magnet Behavior: [(μ4-CO3)2{NiII(3-MeOsaltn)(MeOH or H2O)LnIII(NO3)}2]·solvent [3-MeOsaltn = N, N′-Bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato] Inorg. Chem. 52 7218

    Article  CAS  PubMed  Google Scholar 

  15. Ruiz J, Lorusso G, Evangelisti M, Brechin E K, Pope S J A and Colacio E 2014 Closely-Related ZnII2LnIII2 Complexes (LnIII = Gd, Yb) with Either Magnetic Refrigerant or Luminescent Single-Molecule Magnet Properties Inorg. Chem. 53 3586

    Article  CAS  PubMed  Google Scholar 

  16. Upadhyay A, Das C, Langley S K, Murray K S, Srivastava A K and Shanmugam M 2016 Heteronuclear Ni(ii)–Ln(iii) (Ln = La, Pr, Tb, Dy) complexes: synthesis and single-molecule magnet behaviour Dalton Trans. 45 3616

    Article  CAS  PubMed  Google Scholar 

  17. Liu C -M, Hao X and Zhang D-Q 2020 CO2-fixation into carbonate anions for the construction of 3d-4f cluster complexes with salen-type Schiff base ligands: from molecular magnetic refrigerants to luminescent single-molecule magnets Appl. Organomet Chem. 5893

  18. Woodruff D N, Winpenny R E P and Layfield R A 2013 Lanthanide Single-Molecule Magnets Chem. Rev. 113 5110

    Article  CAS  PubMed  Google Scholar 

  19. Nath J K, Lan Y, Powell A K and Baruah J B 2013 Effect of Ancillary Ligands in Hydrolysis of 1,8-Naphthalic Anhydride for Synthesis of Metallacycles of Co2+, Ni2+, and Zn2+ Z. Anorg. Allg. Chem. 638 2250

    Article  Google Scholar 

  20. Feng X, Guo N, Chen H P, Wang H, Yue L, Chen X, et al. 2017 Series anionic host coordination polymers based on azoxybenzene carboxylate: structures, luminescence, and magnetic properties Dalton Trans. 46 14192

    Article  CAS  PubMed  Google Scholar 

  21. Rubi K, Kumar P, Repaka D V M, Chen R, Wang J-S and Mahendirana R 2014 Giant magnetocaloric effect in magnetoelectric Eu1-xBaxTiO3 Appl. Phys. Lett. 104 032407

    Article  Google Scholar 

  22. Terada N and Mamiya H 2021 High-efficiency magnetic refrigeration using holmium Nat. Commun. 12 1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han S-D, Li J-H, Liu H-H and Wang 2017 G -M 2017 Two hybrid lanthanide complexes exhibiting a large magnetocaloric effect and slow magnetic relaxation Dalton Trans. 46 10023

    Article  CAS  PubMed  Google Scholar 

  24. Das C, Upadhyay A, Ansari K U, Ogiwara N, Kitao T, Horike S and Shanmugam M 2018 Lanthanide-Based Porous Coordination Polymers: Syntheses, Slow Relaxation of Magnetization, and Magnetocaloric Effect Inorg. Chem. 57 6584

    Article  CAS  PubMed  Google Scholar 

  25. Kalita P, Goura J, Nayak P, Colacio E and Chandrasekhar V 2021 Octanuclear Ln8 complexes: magneto-caloric effect in the Gd8 analogue J. Chem. Sci. 133 82

    Article  CAS  Google Scholar 

  26. Wang S Y, Wang W M, Zhang H X, Shen H Y, Jiang L, Cui J Z and Gao H L 2016 Seven phenoxido-bridged complexes encapsulated by 8-hydroxyquinoline Schiff base derivatives and β-diketone ligands: single-molecule magnet, magnetic refrigeration and luminescence properties Dalton Trans. 45 3362

    Article  CAS  PubMed  Google Scholar 

  27. Shen H-Y, Wang W-M, Bi Y-X, Gao H-L, Liu S and Cui J-Z 2015 Luminescence, magnetocaloric effect and single-molecule magnet behavior in lanthanide complexes based on a tridentate ligand derived from 8-hydroxyquinoline Dalton Trans. 44 18893

    Article  CAS  PubMed  Google Scholar 

  28. Cui C, Ju W W, Luo X M, Lin Q F, Cao J P and Xu Y 2018 A Series of Lanthanide Compounds Constructed from Ln8 Rings Exhibiting Large Magnetocaloric Effect and Interesting Luminescence Inorg. Chem. 57 8608

    Article  CAS  PubMed  Google Scholar 

  29. Biswas S, Das S, Leusen J V, Kögerler P and Chandrasekhar V 2015 Pentanuclear [2.2] spirocyclic lanthanide(iii) complexes: slow magnetic relaxation of the DyIII analogue Dalton Trans. 44 19282

    Article  CAS  PubMed  Google Scholar 

  30. Hooda P, Taxak V B, Malik R K, Khatri S, Kumari P, Khatkar S P and Kumar R 2022 Applicability of reddish-orange light emitting samarium (III) complexes for biomedical and multifunctional optoelectronic devices J. Fluores. 32 613

    Article  CAS  Google Scholar 

  31. Li R-F, Li R-H, Liu X-F, Chang X-H and Feng X 2020 Lanthanide complexes based on a conjugated pyridine carboxylate ligand: structures, luminescence and magnetic properties RSC Adv. 10 6192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thomas J and Ambili K S 2015 Synthesis, crystal structure and luminescent properties of a new samarium-fluorescein metal-organic framework J. Mol. Struct. 1098 167

    Article  CAS  Google Scholar 

  33. Zong G-C, Huo J-X, Ren N, Zhang J-J, Qi X-X, Gao J, et al. 2015 Preparation, characterization, and properties of four new trivalent lanthanide complexes constructed using 2-bromine-5-methoxybenzoic acid and 1,10-phenanthroline Dalton Trans. 44 14877

    Article  CAS  PubMed  Google Scholar 

  34. Zheng Y X, Fu L S, Zhou Y H, Yu J B, Yu Y N, Wang S B and Zhang H J 2002 Electroluminescence based on a β-diketonate ternary samarium complex J. Mater. Chem. 12 919

    Article  CAS  Google Scholar 

  35. Deng R, Yu J, Zhang H, Zhou L, Peng Z, Li Z and Guo Z 2007 Photoluminescence and electroluminescence properties of a samarium complex Sm(TTA)3phen Chem. Phys. Lett. 443 258

    Article  CAS  Google Scholar 

  36. Bruker 2012 Smart Apex II (Bruker AXS Inc.: Madison, Wisconsin, USA)

    Google Scholar 

  37. Sheldrick G M 2015 SHELXT – Integrated space-group and crystal structure determination Acta Cryst. A71 3

    Google Scholar 

  38. Macrae C F, Sovago I, Cottrell S J, Galek P T A, McCabe P, Pidcock E, et al. 2020 Mercury 4.0: from visualization to analysis, design, and prediction J. Appl. Cryst. 53 226

    Article  CAS  Google Scholar 

  39. Brandenburg K and Berndt M 1999 Diamond. Crystal Impact Gb R, Bonn, Germany

  40. Turner M J, McKinnon J J, Wolff S K, Grimwood D J, Spackman P R, Jayatilaka D, Spackman M A 2017. Crystal Explorer 17, University of Western Australia

  41. de Almeida L R, Carvalho J P S, Napolitano H B, Oliveira S S, Camargo A J, Figueredo A S, et al. 2017 Contribution of Directional Dihydrogen Interactions in the Supramolecular Assembly of Single Crystals: Quantum Chemical and Structural Investigation of C17H17N3O2 Azine Cryst. Growth Des. 17 5145

    Article  Google Scholar 

  42. Prins L J, Reinhoudt D N and Timmerman P 2001 Noncovalent Synthesis Using Hydrogen Bonding Angew. Chemie Int. Ed. 40 2382

    Article  CAS  Google Scholar 

  43. Liang X, Parkinson J A, Parsons S, Weishaupl M and Sadler P J 2002 Cadmium Cyclam Complexes: Interconversion of Cis and Trans Configurations and Fixation of CO2 Inorg. Chem. 41 4539

    Article  CAS  PubMed  Google Scholar 

  44. Wesley W M and Harry W G H 1966 Reflectance Spectroscopy (New York: Wiley) pp. 104−169

  45. Pankove J I 1997 Optical Processes in Semiconductors (Englewood Cliffs, NJ: Prentice Hall) pp.34-86

  46. Tang X, Sepehri-Amin H, Terada N et al. 2022 Magnetic refrigeration material operating at a full temperature range required for hydrogen liquefaction Nat. Commun. 13 1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kurti N, Robinson F N H, Simon F and Spohr D A 1956 Nuclear cooling Nature 178 450

    Article  CAS  Google Scholar 

  48. Numazawa T, Kamiya K, Utaki T and Matsumoto K 2014 Magnetic refrigerator for hydrogen liquefaction Cryogenics 62 185

    Article  CAS  Google Scholar 

  49. Rovenzano V, Shapiro A J and Shull R D 2004 Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron Nature 429 853

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledged the central instrument facility, IIT Guwahati for instrument support, and S. B. Deorah College for the lab facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Kr. Nath.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 894 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, J.K., Borah, R. A lanthanide cluster formed by fixing atmospheric CO2 to carbonate: a molecular magnetic refrigerant and photoluminescent material. J Chem Sci 135, 58 (2023). https://doi.org/10.1007/s12039-023-02176-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-023-02176-z

Keywords

Navigation