Skip to main content
Log in

Octanuclear {Ln8} complexes: magneto-caloric effect in the {Gd8} analogue

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Two neutral, isostructural, octanuclear, LnIII complexes, [Ln8(HL)6(L)2(μ3-OH)4(μ2-OH)2(H2O)4].solv (Ln = Gd(III), (1Gd) and Dy(III), (2Dy) have been synthesized using LnIII nitrate salts and a o-vanillin-supported multi-dentate ligand, N'-(2-hydroxy-3-methoxy-5-nitrobenzylidene)-2-(hydroxyamino) propanehydrazide (H3L) in the presence of tetramethyl ammonium hydroxide. The complexes were structurally characterized by single crystal X-ray diffraction studies. The complexes are held by the cumulative coordination action of six [HL]2−, two [L]3− chelating ligands, H2O and hydroxide ligands. Magneto-structural analysis of complexes 1Gd and 2Dy reveals the presence of intramolecular antiferromagnetic interactions between the LnIII ions. Magneto-caloric effect was analysed for the complex 1Gd which shows a maximum in the change of molar entropy (–ΔSm) of magnitude 25.5 J kg–1 K–1 at T = 3 K and an applied field change ΔB = 5 T.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Woodruff D N, Winpenny R E P and Layfield R A 2013 Lanthanide single-molecule magnets Chem. Rev. 113 5110

    Article  CAS  PubMed  Google Scholar 

  2. Bar A K, Kalita P, Singh M K, Rajaraman G and Chandrasekhar V 2018 Low-coordinate mononuclear lanthanide complexes as molecular nanomagnets Coord. Chem. Rev. 367 163

    Article  CAS  Google Scholar 

  3. Ding Y-S, Chilton N F, Winpenny R E P and Zheng Y-Z 2016 On approaching the limit of molecular magnetic anisotropy: a near-perfect pentagonal bipyramidal dysprosium(III) single-molecule magnet Angew Chem. Int. Ed. 55 16071

    Article  CAS  Google Scholar 

  4. Pointillart F, Cador O, Le Guennic B and Ouahab L 2017 Uncommon lanthanide ions in purely 4f single molecule magnets Coord. Chem. Rev. 346 150

    Article  CAS  Google Scholar 

  5. Gould C A, Darago L E, Gonzalez M I, Demir S and Long J R 2017 A trinuclear radical-bridged lanthanide single-molecule magnet Angew. Chem. Int. Ed. 56 10103

    Article  CAS  Google Scholar 

  6. Goodwin C A P, Ortu F, Reta D, Chilton N F and Mills D P 2017 Molecular magnetic hysteresis at 60 kelvin in dysprosocenium Nature 548 439

  7. Latendresse T P, Bhuvanesh N S and Nippe M 2017 Slow magnetic relaxation in a lanthanide-[1]metallocenophane complex J. Am. Chem. Soc. 139 8058

    Article  CAS  PubMed  Google Scholar 

  8. Guo F-S, Day B M, Chen Y-C, Tong M-L, Mansikkamäki A and Layfield R A 2018 Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet Science 362 1400

    Article  CAS  PubMed  Google Scholar 

  9. Harriman K L M, Brosmer J L, Ungur L, Diaconescu P L and Murugesu M 2017 Pursuit of record breaking energy barriers: a study of magnetic axiality in diamide ligated DyIII single-molecule magnets J. Am. Chem. Soc. 139 1420

    Article  CAS  PubMed  Google Scholar 

  10. Pedersen K S, Ariciu A-M, McAdams S, Weihe H, Bendix J, Tuna F and Piligkos S 2016 Toward molecular 4f single-ion magnet qubits J. Am. Chem. Soc. 138 5801

    Article  CAS  PubMed  Google Scholar 

  11. Ning Y, Cheng S, Wang J-X, Liu Y-W, Feng W, Li F and Zhang J-L 2019 Fluorescence lifetime imaging of upper gastrointestinal pH in vivo with a lanthanide based near-infrared τ probe Chem. Sci. 10 4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bünzli J-CG 2016 Lanthanide light for biology and medical diagnosis J. Lumin. 170 866

    Article  CAS  Google Scholar 

  13. Carlos L D, Ferreira R A S, de Zea Bermudez V, Julián-López B and Escribano P 2011 Progress on lanthanide-based organic–inorganic hybrid phosphors Chem. Soc. Rev. 40 536

    Article  CAS  PubMed  Google Scholar 

  14. Chen P, Li Q, Grindy S and Holten-Andersen N 2015 White-light-emitting lanthanide metallogels with tunable luminescence and reversible stimuli-responsive properties J. Am. Chem. Soc. 137 11590

    Article  CAS  PubMed  Google Scholar 

  15. Cho U, Riordan D P, Ciepla P, Kocherlakota K S, Chen J K and Harbury P B 2017 Ultrasensitive optical imaging with lanthanide lumiphores Nat. Chem. Biol. 14 15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wartenberg N, Raccurt O, Bourgeat-Lami E, Imbert D and Mazzanti M 2013 Multicolour optical coding from a series of luminescent lanthanide complexes with a unique antenna Chem. Eur. J. 19 3477

    Article  CAS  PubMed  Google Scholar 

  17. Xu L-J, Xu G-T and Chen Z-N 2014 Recent advances in lanthanide luminescence with metal-organic chromophores as sensitizers Coord. Chem. Rev. 273–274 47

    Article  CAS  Google Scholar 

  18. Xu Y-Y, Chen P, Gao T, Li H-F and Yan P-F 2019 White-light emission based on a single component Sm(III) complex and enhanced optical properties by doping methods CrystEngComm 21 964

    Article  CAS  Google Scholar 

  19. Yang X, Lin X, Zhao Y, Zhao Y S and Yan D 2017 Lanthanide metal-organic framework microrods: colored optical waveguides and chiral polarized emission Angew. Chem. Int. Ed. 56 7853

    Article  CAS  Google Scholar 

  20. Zhou Y, Zhang H-Y, Zhang Z-Y and Liu Y 2017 Tunable luminescent lanthanide supramolecular assembly based on photoreaction of anthracene J. Am. Chem. Soc. 139 7168

    Article  CAS  PubMed  Google Scholar 

  21. Jenks T C, Bailey M D, Hovey Jessica L, Fernando S, Basnayake G, Cross M E, et al. 2018 First use of a divalent lanthanide for visible-light-promoted photoredox catalysis Chem. Sci. 9 1273

    Article  CAS  PubMed  Google Scholar 

  22. Qin J, Xu B, Zhang Y, Yuan D and Yao Y 2016 Cooperative rare earth metal–zinc based heterometallic catalysts for copolymerization of CO2 and cyclohexene oxide Green Chem. 18 4270

    Article  CAS  Google Scholar 

  23. Kazeminejad N, Munzel D, Gamer M T and Roesky P W 2017 Bis(amidinate) ligands in early lanthanide chemistry-synthesis, structures, and hydroamination catalysis Chem Commun. 53 1060

    Article  CAS  Google Scholar 

  24. Dochain S, Vetica F, Puttreddy R, Rissanen K and Enders D 2016 Combining organocatalysis and lanthanide catalysis: a sequential one-pot quadruple reaction sequence/hetero-diels–alder asymmetric synthesis of functionalized tricycles Angew. Chem. Int. Ed. 128 16387

    Article  Google Scholar 

  25. Nagae H, Aoki R, Akutagawa S-n, Kleemann J, Tagawa R, Schindler T, et al. 2018 Lanthanide complexes supported by a trizinc crown ether as catalysts for alternating copolymerization of epoxide and CO2: telomerization controlled by carboxylate anions Angew. Chem. Int. Ed. 57 2492

    Article  CAS  Google Scholar 

  26. Han Q, Wang L, Shi Z, Xu C, Dong Z, Mou Z and Liu W 2017 Self-assembly of luminescent lanthanide mesocates as efficient catalysts for transforming carbon dioxide into cyclic carbonates Chem. Asian J. 12 1364

    Article  CAS  PubMed  Google Scholar 

  27. Halter D P, Palumbo C T, Ziller J W, Gembicky M, Rheingold A L, Evans W J and Meyer K 2018 Electrocatalytic H2O reduction with f-elements: mechanistic insight and overpotential tuning in a series of lanthanide complexes J. Am. Chem. Soc. 140 2587

    Article  CAS  PubMed  Google Scholar 

  28. Pagis C, Ferbinteanu M, Rothenberg G and Tanase S 2016 Lanthanide-based metal organic frameworks: synthetic strategies and catalytic applications ACS Catal. 6 6063

    Article  CAS  Google Scholar 

  29. Zhang Z, Zhang Y and Zheng Z 2016 In Recent Development in Clusters of Rare Earths and Actinides: Chemistry and Materials Z Zheng (Ed.) (Berlin, Heidelberg: Springer) Vol. 173

  30. Le Natur F, Calvez G, Guégan J-P, Le Pollès L, Trivelli X, Bernot K, et al. 2015 Characterization and luminescence properties of lanthanide-based polynuclear complexes nanoaggregates Inorg. Chem. 54 6043

    Article  PubMed  CAS  Google Scholar 

  31. Zhou Y, Zheng X-Y, Cai J, Hong Z-F, Yan Z-H, Kong X-J, et al. 2017 Three giant lanthanide clusters Ln37 (Ln = Gd, Tb, and Eu) featuring A double-cage structure Inorg. Chem. 56 2037

    Article  CAS  PubMed  Google Scholar 

  32. Luo T-Y, Liu C, Eliseeva S V, Muldoon P F, Petoud S and Rosi N L 2017 Rare earth pcu metal-organic framework platform based on RE4(μ3-OH)4(COO)62+ clusters: rational design, directed synthesis, and deliberate tuning of excitation wavelengths J. Am. Chem. Soc. 139 9333

    Article  CAS  PubMed  Google Scholar 

  33. Guo F-S, Chen Y-C, Mao L-L, Lin W-Q, Leng J-D, Tarasenko R, et al. 2013 Anion-TEMPlated assembly and magnetocaloric properties of a nanoscale Gd38 cage versus a Gd48 barrel Chem. Eur. J. 19 14876

    Article  CAS  PubMed  Google Scholar 

  34. Thielemann D T, Wagner A T, Lan Y, Oña-Burgos P, Fernández I, Rösch E S, et al. 2015 Peptoid-ligated pentadecanuclear yttrium and dysprosium hydroxy clusters Chem. Eur. J. 21 2813

    Article  CAS  PubMed  Google Scholar 

  35. Wang W-M, Wu Z-L, Zhang Y-X, Wei H-Y, Gao H-L and Cui J-Z 2018 Self-assembly of tetra-nuclear lanthanide clusters via atmospheric CO2 fixation: interesting solvent-induced structures and magnetic relaxation conversions Inorg. Chem. Front. 5 2346

    Article  CAS  Google Scholar 

  36. Zheng X-Y, Peng J-B, Kong X-J, Long L-S and Zheng L-S 2016 Mixed-anion templated cage-like lanthanide clusters: Gd27 and Dy27 Inorg. Chem. Front. 3 320

    Article  CAS  Google Scholar 

  37. Calvez G, Le Natur F, Daiguebonne C, Bernot K, Suffren Y and Guillou O 2017 Lanthanide-based hexa-nuclear complexes and their use as molecular precursors Coord.Chem. Rev. 340 134

    Article  CAS  Google Scholar 

  38. Omagari S, Nakanishi T, Kitagawa Y, Seki T, Fushimi K, Ito H, et al. 2016 Critical role of energy transfer between terbium ions for suppression of back energy transfer in nonanuclear terbium clusters Sci. Rep. 6 37008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng X-Y, Xie J, Kong X-J, Long L-S and Zheng L-S 2019 Recent advances in the assembly of high-nuclearity lanthanide clusters Coord. Chem. Rev. 378 222

    Article  CAS  Google Scholar 

  40. Xiong J, Ding H-Y, Meng Y-S, Gao C, Zhang X-J, Meng Z-S, et al. 2017 Hydroxide-bridged five-coordinate DyIII single-molecule magnet exhibiting the record thermal relaxation barrier of magnetization among lanthanide-only dimers Chem. Sci. 8 1288

    Article  CAS  PubMed  Google Scholar 

  41. Qin L, Yu Y-Z, Liao P-Q, Xue W, Zheng Z, Chen X-M and Zheng Y-Z 2016 A “molecular water pipe”: a giant tubular cluster Dy72 exhibits fast proton transport and slow magnetic relaxation Adv. Mater. 28 10772

    Article  CAS  PubMed  Google Scholar 

  42. Wang G, Wei Y and Wu K 2016 Goblet-shaped pentanuclear lanthanide clusters assembled with a cyclen derivative ligand exhibiting slow magnetic relaxation Dalton Trans. 45 12734

    Article  CAS  PubMed  Google Scholar 

  43. Ibrahim M, Mereacre V, Leblanc N, Wernsdorfer W, Anson C E and Powell A K 2015 Self-assembly of a giant tetrahedral 3 d–4 f Single-molecule magnet within a polyoxometalate system Angew. Chem. Int. Ed. 54 15574

    Article  CAS  Google Scholar 

  44. An R, Chen X-L, Hu H-M, Ren Y-L, Wu Q-R and Xue G-L 2015 Synthesis and characterization of an unprecedented 3D lanthanide coordination polymer assembled by cubane-like clusters and a flexible V-shaped dicarboxylate ligand Inorg. Chem. Commun. 61 177

    Article  CAS  Google Scholar 

  45. Wong H-Y, Chan W T K and Law G-L 2018 Assembly of lanthanide(III) cubanes and dimers with single-molecule magnetism and photoluminescence Inorg. Chem. 57 6893

    Article  CAS  PubMed  Google Scholar 

  46. Acharya J, Biswas S, van Leusen J, Kumar P, Kumar V, Narayanan R S, et al. 2018 Exploring tuning of structural and magnetic properties by modification of ancillary β-diketonate co-ligands in a family of near-linear tetranuclear DyIII complexes Cryst. Growth Des. 18 4004

    Article  CAS  Google Scholar 

  47. Das S, Hossain S, Dey A, Biswas S, Sutter J-P and Chandrasekhar V 2014 Molecular magnets based on homometallic hexanuclear lanthanide(III) complexes Inorg. Chem. 53 5020

    Article  CAS  PubMed  Google Scholar 

  48. Biswas S, Das S, Rogez G and Chandrasekhar V 2016 Hydrazone-ligand-based homodinuclear lanthanide complexes: synthesis, structure, and magnetism Eur. J. Inorg. Chem. 2016 3322

    Article  CAS  Google Scholar 

  49. Biswas S, Das S, Gupta T, Singh S K, Pissas M, Rajaraman G and Chandrasekhar V 2016 Observation of slow relaxation and single-molecule toroidal behavior in a family of butterfly-shaped Ln4 complexes Chem. Eur. J. 22 18532

    Article  CAS  PubMed  Google Scholar 

  50. Biswas S, Das S, Hossain S, Bar A K, Sutter J-P and Chandrasekhar V 2016 Tetranuclear lanthanide(III) complexes containing a square-grid core: synthesis, structure, and magnetism Eur J. Inorg. Chem. 2016 4683

    Article  CAS  Google Scholar 

  51. Kalita P, Goura J, Manuel Herrera Martínez J, Colacio E and Chandrasekhar V 2019 Homodinuclear LnIII2 (LnIII = GdIII, TbIII, HoIII, and DyIII) complexes: field-induced SMM behavior of the DyIII and TbIII analogues Eur. J. Inorg. Chem. 2019 212

    Article  CAS  Google Scholar 

  52. Li L-F, Kuang W-W, Li Y-M, Zhu L-L, Xu Y and Yang P-P 2019 A series of new octanuclear Ln8 clusters: magnetic studies reveal a significant cryogenic magnetocaloric effect and slow magnetic relaxation New J. Chem. 43 1617

    Article  CAS  Google Scholar 

  53. Li X-L, Wu J, Zhao L, Shi W, Cheng P and Tang J 2017 End-to-end azido-pinned interlocking lanthanide squares Chem. Commun. 53 3026

    Article  CAS  Google Scholar 

  54. Chen H, Yang X, Jiang D, Shi D and Zhang L 2018 Construction of NIR luminescent polynuclear lanthanide-based nanoclusters with sensing properties towards metal ions Dalton Trans. 47 13880

    Article  CAS  PubMed  Google Scholar 

  55. Chandrasekhar V, Bag P and Colacio E 2013 Octanuclear {Ln(III)8}(Ln = Gd, Tb, Dy, Ho) macrocyclic complexes in a cyclooctadiene-like conformation: manifestation of slow relaxation of magnetization in the Dy(III) derivative Inorg. Chem. 52 4562

    Article  CAS  PubMed  Google Scholar 

  56. Nikolayenko IV, Bazzicalupi C, Thubron G P and Grimmer C 2010 Ethyl (2E )-2-(hydroxyimino)propanoate Acta Cryst. E 66 o887

    Article  CAS  Google Scholar 

  57. Fritsky I O, Kozłowski H, Sadler P J, P. Yefetova O, Śwątek-Kozłowska J, Kalibabchuk V A and Głowiak T 1998 Template synthesis of square-planar nickel(II) and copper(III) complexes based on hydrazide ligands J. Chem. Soc. Dalton Trans. 3269

  58. SMART & SAINT Software Reference manuals, version 6.45, Bruker Analytical X-ray Systems, Inc., Madison, WI, 2003

  59. SADABS, Program for Empirical Absorption Correction, University of Gottingen, Germany, 1996

  60. Bruker APEX2, version 2008.1−0, Bruker AXS Inc., Madison, Wisconsin, USA, 2008

  61. Sheldrick G M 2015 SHELXT-integrated space-group and crystal structure determination Acta Cryst. A 71 3

    Article  CAS  Google Scholar 

  62. Sheldrick G M 2015 Crystal structure refinement with SHELXL Acta Cryst. C 71 3

    Article  CAS  Google Scholar 

  63. Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K and Puschmann H 2009 OLEX2: a complete structure solution, refinement and analysis program J. Appl. Crystallogr. 42 339

    Article  CAS  Google Scholar 

  64. Brown I D 2009 Recent developments in the methods and applications of the bond valence model Chem. Rev. 109 6858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Trzesowska A, Kruszynski R and Bartczak T J 2004 New bond-valence parameters for lanthanides Acta Cryst. B 60 174

    Article  CAS  Google Scholar 

  66. Spek A 2015 PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors Acta Cryst. C 71 9

    Article  CAS  Google Scholar 

  67. DIAMOND, version 3.2, Crystal Impact GbR, Bonn, Germany, 1997

  68. SHAPE: Continuous Shape Measures calculation, version 2.1, Electronic Structure Group, Universitat de Barcelona, Spain, 2013.

  69. Cirera J, Ruiz E and Alvarez S 2005 Continuous shape measures as a stereochemical tool in organometallic chemistry Organometallics 24 1556

    Article  CAS  Google Scholar 

  70. Costes J-P, Dupuis A and Laurent J-P 1998 Homodinuclear lanthanide complexes: Ln2L3 (H2L = tetradentate Schiff bases). Magnetic properties (solid state) and spectroscopic studies (solution) Inorg. Chim. Acta 268 125

    Article  CAS  Google Scholar 

  71. John D and Urland W 2006 Crystal structure and magnetic behaviour of the new gadolinium carboxylates Gd2(ClF2CCOO)6(hypy)2, Gd2(F3CCOO)6(hypy)2, Gd2(F2HCCOO)6(hypy)2 and Gd2(Cl2HCCOO)6(H2O)2(hypy)2 Eur. J. Inorg. Chem. 2006 3503

    Article  CAS  Google Scholar 

  72. Roy L E and Hughbanks T 2006 Magnetic coupling in dinuclear Gd complexes J. Am. Chem. Soc. 128 568

    Article  CAS  PubMed  Google Scholar 

  73. Evangelisti M 2014 In Molecular Magnets Physics and Applications J Bartolomé, F Luis and J F Fernández (Eds.) p. 365

  74. Bala S, Adhikary A, Bhattacharya S, Bishwas M S, Poddar P and Mondal R 2017 Ln8 (Ln= Gd, Ho, Er, Yb) butterfly core-exhibiting magnetocaloric effect and field-induced SMM behavior for Er analouge ChemistrySelect 2 11341

    Article  CAS  Google Scholar 

  75. Cui C, Ju W, Luo X, Lin Q, Cao J and Xu Y 2018 A series of lanthanide compounds constructed from Ln8 rings exhibiting large magnetocaloric effect and interesting luminescence Inorg. Chem. 57 8608

    Article  CAS  PubMed  Google Scholar 

  76. Zangana K H, Pineda E M, Schnack J and Winpenny R E P 2013 Octametallic 4f-phosphonate horseshoes Dalton Trans. 42 14045

    Article  CAS  PubMed  Google Scholar 

  77. Evangelisti M and Brechin E K 2010 Recipes for enhanced molecular cooling Dalton Trans. 39 4672

    Article  CAS  PubMed  Google Scholar 

  78. Sharples J W and Collison D 2013 Reprint of “Coordination compounds and the magnetocaloric effect” Polyhedron 66 15

    Article  CAS  Google Scholar 

  79. Sessoli R 2012 Chilling with magnetic molecules Angew. Chem. Int. Ed. 51 43

    Article  CAS  Google Scholar 

  80. Fernando L and Marko E 2015 In Molecular Nanomagnets and Related Phenomena S Gao (Ed.) (Berlin Heidelberg: Springer-Verlag) Vol. 164 p. 431

  81. Liu J-L, Chen Y-C, Guo F-S and Tong M-L 2014 Recent advances in the design of magnetic molecules for use as cryogenic magnetic coolants Coord. Chem. Rev. 281 26

    Article  CAS  Google Scholar 

  82. Chen Y-C, Qin L, Meng Z-S, Yang D-F, Wu C, Fu Z, et al. 2014 Study of a magnetic-cooling material Gd(OH)CO3 J. Mater. Chem. A 2 9851

    Article  CAS  Google Scholar 

  83. Han S-D, Miao X-H, Liu S-J and Bu X-H 2014 Magnetocaloric effect and slow magnetic relaxation in two dense (3,12)-connected lanthanide complexes Inorg. Chem. Front. 1 549

    Article  CAS  Google Scholar 

  84. Rinehart J D and Long J R 2011 Exploiting single-ion anisotropy in the design of f-element single-molecule magnets Chem. Sci. 2 2078

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ENRIQUE COLACIO or VADAPALLI CHANDRASEKHAR.

Additional information

Special Issue on Beyond Classical Chemistry

Supplementary Information (SI)

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KALITA, P., GOURA, J., NAYAK, P. et al. Octanuclear {Ln8} complexes: magneto-caloric effect in the {Gd8} analogue. J Chem Sci 133, 82 (2021). https://doi.org/10.1007/s12039-021-01920-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01920-7

Navigation