Skip to main content
Log in

One-pot synthesis of bimetal MOFs as highly efficient catalysts for selective oxidation of styrene

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A series of novel bimetallic organic framework materials (Cux-Coy-MOF) have been successfully prepared by a simple one-pot synthetic method, and their characters were evaluated via means of various techniques. The tested data showed a series of Cux-Coy-MOFs displayed good crystallinity and the doping of Co in original Cu-based framework would not change the morphology of the MOF catalysts. The catalytic activity of prepared materials was tested in the catalytic oxidation of styrene in the presence of TBHP. The effects of reaction time, reaction temperature and other reaction conditions on catalytic performance were systematically studied. The results revealed that the introduction of Co can improve the selectivity to form epoxides and reduce the yield of benzaldehyde without affecting the conversion rate of catalytic oxidation reaction of styrene. Excitingly, the Cu0.25-Co0.75-MOF showed better catalytic performance than Cu-MOF and Co-MOF under the optimal reaction conditions, the conversion rate of styrene reached 97.81%, and styrene oxide selectivity reached 83.04%, which indicated a significant synergistic effect of the Cu/Co bimetallic MOF. Furthermore, the Cu0.25-Co0.75-MOF catalyst exhibited good reusability that could be reused at least four times without significant inactivation.

Graphic abstract

A series of novel bimetallic organic framework materials (Cux-Coy-MOF) have been successfully prepared via a simple one-pot synthetic method, and they exhibited high activity and selectivity as catalyst towards for oxidation of styrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Dhakshinamoorthy A, Alvaro M and Garcia H 2011 Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework ACS Catal. 1 836

    CAS  Google Scholar 

  2. Hammer S C, Kubik G, Watkins E, Huang S, Minges H and Arnold F H 2017 Anti-Markovnikov alkene oxidation by metal-oxo–mediated enzyme catalysis Science 358 215

  3. Cozzi P G 2004 Metal–Salen Schiff base complexes in catalysis: practical aspects Chem. Soc. Rev. 33 410

    Article  CAS  Google Scholar 

  4. Gupta K C and Sutar A K 2008 Catalytic activities of Schiff base transition metal complexes Coord. Chem. Rev. 252 1420

    Article  CAS  Google Scholar 

  5. Yamada T, Sakakura A, Sakaguchi S, Obora Y and Ishii Y 2008 Oxidative arylation of ethylene with benzene catalyzed by Pd(OAc)2/heteropoly acid/O2 system New J. Chem. 32 738

    Article  CAS  Google Scholar 

  6. Shylesh S, Schnemann V and Thiel W R 2010 Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis Angew. Chem. Int. Ed. 49 3428

    Article  CAS  Google Scholar 

  7. Yang Y, Zhang Y, Hao S J and Kan Q B 2011 Tethering of Cu(II), Co(II) and Fe(III) tetrahydro-salen and salen complexes onto amino-functionalized SBA-15: Effects of salen ligand hydrogenation on catalytic performances for aerobic epoxidation of styrene Chem. Eng. J. 171 1356

    Article  CAS  Google Scholar 

  8. Gupta K C, Sutar A K and Lin C C 2009 Polymer-supported Schiff base complexes in oxidation reactions Coord. Chem. Rev. 253 1926

    Article  CAS  Google Scholar 

  9. Hossain M M, Atanda L, Al-Yassir N and Al-Khattaf S 2012 Kinetics modeling of ethylbenzene dehydrogenation to styrene over a mesoporous alumina supported iron catalyst Chem. Eng. J. 207–208 308

    Article  Google Scholar 

  10. Pan D H, Xu Q, Dong Z Y, Chen S W, Yu F, Yan X L, Fan B B and Li R F 2015 Facile synthesis of highly ordered mesoporous cobalt–alumina catalysts and their application in liquid phase selective oxidation of styrene RSC Adv. 5 98377

  11. Wang X F, Wu S J, Li Z F, Yang X Y, Su H J, Hu J, Huo Q S, Guan J Q and Kan Q B 2016 Cu(II), Co(II), Fe(III) or VO(II) Schiff base complexes immobilized onto CMK-3 for styrene epoxidation Micropor. Mesopor. Mater. 221 48

    Article  Google Scholar 

  12. Thao N T and Huyen L T K 2015 Catalytic oxidation of styrene over Cu-doped hydrotalcites Chem. Eng. J. 279 840

    Article  Google Scholar 

  13. Jiao L, Wang Y, Jiang H L and Xu Q 2018 Metal–Organic Frameworks as Platforms for Catalytic Applications Adv. Mater. 30 1703663

    Article  Google Scholar 

  14. Furukawa H, Cordova K E, O’Keeffe M and Yaghi O M 2013 The Chemistry and Applications of Metal-Organic Frameworks Science 341 1230444

    Article  Google Scholar 

  15. Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S T and Hupp J T 2009 Metal–organic framework materials as catalysts Chem. Soc. Rev. 38 1450

    Article  CAS  Google Scholar 

  16. Yang Q H, Xu Q and Jiang H L 2017 Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis Chem. Soc. Rev. 46 4774

    Article  CAS  Google Scholar 

  17. Wu C D, Hu A G, Zhang L and Lin W B 2005 A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis J. Am. Chem. Soc. 127 8940

    Article  CAS  Google Scholar 

  18. Huang K, Guo L L and Wu D F Synthesis of nanorod MOF catalyst containing Cu2+ and its selective oxidation of styrene Mater. Res. Express. 6 125101

  19. Wu Y, Wang W, Liu L L, Zhu S N, Wang X C, Hu E Z and Hu K H 2019 Novel Synthesis of Cu-Schiff Base Complex@Metal-Organic Framework MIL-101 via a Mild Method: A Comparative Study for Rapid Catalytic Effects ChemistryOpen 8 33

  20. Ramanathan R and Sugunan S 2007 Styrene oxidation by H2O2 using Ni–Gd ferrites prepared by co-precipitation method Catal. Commun. 8 1521

    Article  CAS  Google Scholar 

  21. Huang K, Wang Z L and Wu D F 2018 Synthesis of well-ordered MCM-41 containing highly-dispersed NiO nanoparticles and efficient catalytic epoxidation of styrene J. Chem. Sci. 130 62

    Article  Google Scholar 

  22. Huang Y B, Liang J, Wang X S and Cao R 2017 Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions Chem. Soc. Rev. 46 126

    Article  CAS  Google Scholar 

  23. Liu H L, Fang R Q, Li Z and Li Y W 2015 Solventless hydrogenation of benzene to cyclohexane over a heteroge neous Ru–Pt bimetallic catalyst Chem. Eng. J. 122 350

    Article  CAS  Google Scholar 

  24. Stubbs A W, Braglia L, Borfecchia E, Meyer R J, Roman-Leshkov Y, Lamberti C and Dinca M 2018 Selective Catalytic Olefin Epoxidation with MnII-Exchanged MOF-5 ACS Catal. 8 596

  25. Huang K, Guo L L and Wu D F 2019 Synthesis of Metal Salen@MOFs and Their Catalytic Performance for Styrene Oxidation Ind. Eng. Chem. Res. 58 4744

    Article  CAS  Google Scholar 

  26. Lin S, Song Z L, Che G B, Ren A, Li P, Liu C B and Zhang J H 2014 Adsorption behavior of metal-organic frameworks for methylene blue from aqueous solution Micropor. Mesopor. Mater. 193 27

    Article  CAS  Google Scholar 

  27. Wu Y, Kobayashi A, Halder G J, Peterson V K, Chapman K W, Lock N, Southon P D and Kepert C J 2008 Negative Thermal Expansion in the Metal–Organic Framework Material Cu3(1,3,5-benzenetricarboxylate)2 Angew. Chem. Int. Ed. 47 8929

    Article  CAS  Google Scholar 

  28. Zhao G H, Liu Q, Tian N, Yu L and Dai W 2018 Highly Efficient Benzothiophene Capture with a Metal-Modified Copper-1,3,5-Benzenetr-icarboxylic Acid Adsorbent Energy Fuels 32 6763

  29. Qin Y H, Huang L, Zhang L and He H B 2019 One-step synthesis of confined ion Agx-Cu-BTC for selective catalytic reduction of NO with CO Inorg. Chem. Commun. 102 130

    Article  CAS  Google Scholar 

  30. Maiti S, Pramanik A, Manju U and Mahanty S 2015 Reversible Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal-Organic Framework with High Capacity and Rate Performance ACS Appl. Mater. Interfaces 7 16357

    Article  CAS  Google Scholar 

  31. Feng C, Guo C Y, Hu D, Guo J, Cao X L, Akram N and Wang J D 2018 Catalytic performance of Co 1,3,5-benzenetricarboxylate in the conversion of CO2 to cyclic carbonates Reac. Kinet Mech Cat. 125 633

    Article  CAS  Google Scholar 

  32. Li C, Lou X B, Shen M, Hu X S, Guo Z, Wang Y, Hu B W and Chen Q 2016 High Anodic Performance of Co 1,3,5-Benzenetricarboxylate Coordination Polymers for Li-Ion Battery ACS Appl. Mater. Interfaces 8 15352

    Article  CAS  Google Scholar 

  33. Wang T T, Li X X, Dai W, Fang Y Y and Huang H 2015 Enhanced adsorption of dibenzothiophene with zinc/copper-based metal–organic frameworks J. Mater. Chem. A 3 21044

    Article  CAS  Google Scholar 

  34. Wang P C, Zhou Y K, Hu M and Chen J 2017 Well-dispersed NiO nanoparticles supported on nitrogen-doped carbon nanotube for methanol electrocatalytic oxidation in alkaline media Appl. Surf. Sci. 392 562

    Article  CAS  Google Scholar 

  35. Tu X F, Zhou Y K and Song Y J 2017 Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries Appl. Surf. Sci. 400 329

    Article  CAS  Google Scholar 

  36. Wu Y F, Song X H, Xu S Q, Zhang J H, Zhu Y L, Gao L J and Xiao G M 2019 2-Methylimidazole Modified Co-BTC MOF as an Efficient Catalyst for Chemical Fixation of Carbon Dioxide Catal. Lett. 149 2575

    Article  CAS  Google Scholar 

  37. Tang J T and Wang J L 2020 Iron-copper bimetallic metal-organic frameworks for efficient Fentonlike degradation of sulfamethoxazole under mild conditions Chemosphere 241 125002

    Article  CAS  Google Scholar 

  38. Huang Q Q, Chen Y, Yu H Q, Yan L G, Zhang J H, Wang B, Du B and Xing L T 2018 Magnetic graphene oxide/MgAl-layered double hydroxide nanocomposite: One-pot solvothermal synthesis, adsorption performance and mechanisms for Pb2+, Cd2+, and Cu2+ Chem. Eng. J. 341 1

    Article  CAS  Google Scholar 

  39. Feng C, Wang Y N, Gao S T, Shang N Z and Wang C 2016 Hydrogen generation at ambient conditions: AgPd bimetal supported on metal–organic framework derived porous carbon as an efficient synergistic catalyst Catal. Commun. 78 17

    Article  CAS  Google Scholar 

  40. Orcajo G, Villajos J A, Martos C, Botas J A and Calleja G 2015 Influence of chemical composition of the open bimetallic sites of MOF-74 on H2 adsorption Adsorption 21 589

Download references

Acknowledgement

This study was funded by the National Natural Science Foundation of China (No. 21576049) and the Fundamental Research Funds for the Central Universities (No. 2242016K40082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 604 kb)

Supplementary Information (SI)

Supplementary Information (SI)

Figures S1-S4 and Table S1 are available at www.ias.ac.in/chemsci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., Yu, S., Li, X. et al. One-pot synthesis of bimetal MOFs as highly efficient catalysts for selective oxidation of styrene. J Chem Sci 132, 139 (2020). https://doi.org/10.1007/s12039-020-01841-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01841-x

Keywords

Navigation