Skip to main content
Log in

Synthesis, characterization and photoluminescence properties of tetra(aminophenyl) porphyrin covalently linked to multi-walled carbon nanotubes

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Synthesis of a new nano hybrid of 5,10,15,20-mesotetra(4-aminophenyl) porphyrin (TAP) functionalized with multi-walled carbon nanotubes (MWCNTs) through an amide linkage is reported for the first time. This MWCNT-TAP hybrid was characterized by Raman, Fourier transform infrared (FT-IR), Transmission electron microscopy (TEM), Thermogravimetric analysis (TGA), absorption and emission spectroscopy. TGA analysis reveals that there is a \(\sim \)60% weight loss when heated from 150–750\(^{\circ }\mathrm{C}\), which is attributed to the amount of TAP molecules that were attached to MWCNTs. Electronic properties of MWCNTs were improved in the hybrid compared to raw MWCNTs as evidenced by Raman spectra. The absorption and emission spectra of TAP and nano-hybrid indicate strong positive solvatochromism with increasing solvent polarity. Fluorescence quenching of TAP in different solvents were observed in the emission spectra in the MWCNT-TAP hybrid, indicating that covalent functionalization facilitated effective energy or electron transfer from porphyrin moiety to the MWCNT.

Graphical Abstract

SYNOPSIS 5,10,15,20-mesotetra(4-aminophenyl) porphyrin (TAP) was covalently functionalized with MWCNTs through an amide linkage. Fluorescence quenching of TAP by MWCNTs were observed in different solvents. The absorption and emission spectra of this nano-hybrid exhibits strong positive solvatochromism, increasing with the solvent polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ajayan P M 1999 Nanotubes from Carbon Chem. Rev. 99 1787

    Article  CAS  Google Scholar 

  2. De Volder M F L, Tawfisk S H, Baughman R H and Hart A J 2013 Carbon Nanotubes: Present and Future Commercial Applications Science 339 535

    Article  Google Scholar 

  3. Baughman R H, Zakhidov A A and de Heer W A 2002 Carbon Nanotubes—the Route Toward Applications Science 297 787

    Article  CAS  Google Scholar 

  4. Wang F, Gu H and Swager T M 2008 Carbon Nanotube/Polythiophene Chemiresistive Sensors for Chemical Warfare Agents J. Am. Chem. Soc. 130 5392

    Article  CAS  Google Scholar 

  5. Kong J, Franklin N R, Zhou C, Chapline M G, Peng S, Cho K and Dai H 2000 Nanotube Molecular Wires as Chemical Sensors Science 287 622

    Article  CAS  Google Scholar 

  6. Guldi D M, Rahman G M A, Jux N, Balbinot D, Tagmatarchis N and Prato M 2005 Multiwalled carbon nanotubes in donor–acceptor nanohybrids—towards long-lived electron transfer products Chem. Commun. 15 2038

    Article  Google Scholar 

  7. Ehli C, Guldi D M, Herranz M A, Martín N, Campidelli S and Prato M 2008 Pyrene-tetrathiafulvalene supramolecular assembly with different types of carbon nanotubes J. Mater. Chem. 18 1498

    Article  CAS  Google Scholar 

  8. Lu W, Li N, Chen W and Yao Y 2009 The role of multiwalled carbon nanotubes in enhancing the catalytic activity of cobalt tetraaminophthalocyanine for oxidation of conjugated dyes Carbon 47 3337

    Article  CAS  Google Scholar 

  9. Rayati S and Sheybanifard Z 2016 Catalytic activity of Mn(III) and Fe(III) porphyrins supported onto multi-walled carbon nanotubes in the green oxidation of organic dyes with hydrogen peroxide: A comparative study J. Iran Chem. Soc. 13 541

    Article  CAS  Google Scholar 

  10. Wang X, Wang B, Zhong J, Zhao F, Han N, Huang W, Zeng M, Fan J and Li Y 2016 Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction Nano Res. 9 1497

    Article  CAS  Google Scholar 

  11. Jin J, Dong Z, He J and Li R 2009 Synthesis of Novel Porphyrin and its Complexes Covalently Linked to Multi-Walled Carbon Nanotubes and Study of their Spectroscopy J. Ma. Nanoscale Res. Lett. 4 578

    Article  CAS  Google Scholar 

  12. Reddy A L M, Rajalakshmi N and Ramaprabhu S 2008 Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuel cells Carbon 46 2

    Article  CAS  Google Scholar 

  13. Wang A J, Fang Y, Long L L, Song Y L, Yu W, Zhao W, Cifuentes M P, Humphery M G and Zhang C 2013 Facile synthesis and enhanced nonlinear optical properties of porphyrin-functionalized multi-walled carbon nanotubes Chem. Eur. J. 15 3882

    Google Scholar 

  14. Stylianakis M M, Konios D, Kakavelakis G, Charalambidis G, Stratakis E, Coutsolelos A G, Kymakis E and Anastasiadis S H 2015 Efficient ternary organic photovoltaics incorporating grapheme -based porphyrin molecule as a universal electron cascade material Nanoscale 7 17827

    Article  CAS  Google Scholar 

  15. Rahman G M A, Guldi D M, Campidelli S and Prato M 2006 Electronically interacting single wall carbon nanotube–porphyrin nanohybrids J. Mater. Chem. 16 62

    Article  CAS  Google Scholar 

  16. Li H, Zhou B, Lin Y, Gu L R, Wang W, Fernando K A S, Kumar S, Allard L F and Sun Y P 2004 Selective Interactions of Porphyrins with Semiconducting Single-Walled Carbon Nanotubes J. Am. Chem. Soc. 126 1014

    Article  CAS  Google Scholar 

  17. Murakami H, Nomura T and Nakashima N 2003 Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin–nanotube nanocomposites Chem. Phys. Lett. 378 481

    CAS  Google Scholar 

  18. Chen J Y and Collier C P 2005 Noncovalent Functionalization of Single-Walled Carbon Nanotubes with Water-Soluble Porphyrins J. Phys. Chem. B 109 7605

    Article  CAS  Google Scholar 

  19. Hasobe T, Fukuzumi S and Kamat P V 2005 Ordered Assembly of Protonated Porphyrin Driven by Single-Wall Carbon Nanotubes. J- and H-Aggregates to Nanorods J. Am. Chem. Soc . 127 11884

    Article  CAS  Google Scholar 

  20. Yamuna R, Ramakrishnan S, Dhara K, Devi R, Kothurkar N K, Kirubha E and Palanisamy P K 2013 Synthesis, characterization, and nonlinear optical properties of graphene oxide functionalized with tetra-amino porphyrin J. Nanopart. Res. 15 1

    Article  Google Scholar 

  21. Jin J, Dong Z, He J and Li R 2009 Synthesis of Novel Porphyrin and its Complexes Covalently Linked to Multi-Walled Carbon Nanotubes and Study of their Spectroscopy Nanoscale Res. Lett. 4 578

    Article  CAS  Google Scholar 

  22. Baskaran D, Mays J W, Zhang X P and Bratcher M S 2005 Carbon Nanotubes with Covalently Linked Porphyrin Antennae: Photoinduced Electron Transfer J. Am. Chem. Soc. 127 6916

    Article  CAS  Google Scholar 

  23. Moghadam M, Baltork I M, Tangestaninejad S, Mirkhani V, Kargar H and Isfahani N Z 2009 Manganese(III) porphyrin supported on multi-wall carbon nanotubes: A highly efficient and reusable biomimetic catalyst for epoxidation of alkenes with sodium periodate Polyhedron 28 3816

    Article  CAS  Google Scholar 

  24. Xu Y, Liu Z, Zhang X, Wang Y, Tian J, Huang Y, Ma Y, Zhang X and Chen Y 2009 A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property Adv. Mater. 21 1275

    Article  CAS  Google Scholar 

  25. Li H, Martin R B, Harruff B A, Carino R A, Allard L F and Sun Y P 2004 Single-Walled Carbon Nanotubes Tethered with Porphyrins: Synthesis and Photophysical Properties Adv. Mater. 16 896

    Article  CAS  Google Scholar 

  26. Krishna M B M, Kumar V P, Venkatramaiah N, Venkatesan R and Rao D N 2011 Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials Appl. Phys. Lett. 98 081106-1

    Article  Google Scholar 

  27. Guo Z, Du F, Ren D, Chen Y, Zheng J, Liu Z and Tian J 2006 Covalently porphyrin-functionalized single-walled carbon nanotubes: a novel photoactive and optical limiting donor–acceptor nanohybrid J. Mater. Chem. 16 3021

    Article  CAS  Google Scholar 

  28. Liu Z B, Tian J G, Guo Z, Ren D M, Du F, Zheng J Y and Chen Y S 2008 Enhanced Optical Limiting Effects in Porphyrin-Covalently Functionalized Single-Walled Carbon Nanotubes Adv. Mater. 20 511

    Article  CAS  Google Scholar 

  29. Goyanes S, Rubiolo G R, Salazar A, Jimeno A, Corcuera M A and Mondragon I 2007 Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy Diamond Relat. Mater. 16 412

    Article  CAS  Google Scholar 

  30. Silva S, Pereira P M R, Silva P, Paz F A A, Faustino M A F, Cavaleiro J A S and Tome J P C 2012 Porphyrin and phthalocyanine glycodendritic conjugates: Synthesis, photophysical and photochemical properties Chem. Commun. 48 3608

    Article  CAS  Google Scholar 

  31. Adler A D, Longo F R, Finarelli J D, Goldmacher J, Assour J and Korsakoff L 1967 A Simplified Synthesis for meso-Tetraphenylporphin J. Org. Chem. 32 476

    Article  CAS  Google Scholar 

  32. Qu K, Xu H, Zhao C, Ren J and Qu X 2011 Amine-linker length dependent electron transfer between porphyrins and covalent amino-modified single-walled carbon nanotubes RSC Adv. 1 632

    Article  CAS  Google Scholar 

  33. Tan J M, Karthivashan G, Arulselvan P, Fakurazi S and Hussein M Z 2014 Characterization and in vitro studies of the anticancer effect of oxidized carbon nanotubes functionalized with betulinic acid Drug Des. Devel. Ther. 8 2333

    Article  Google Scholar 

  34. Datsyuk V, Kalyva M, Papagelis K, Partenios J, Tasis D and Siokou A 2008 Chemical oxidation of multiwalled carbon nanotubes Carbon 46 833

    Article  CAS  Google Scholar 

  35. Karousis N, Sandanayaka A S D, Hasobe T, Economopoulos S P, Sarantopouloua E and Tagmatarchis N 2011 Graphene oxide with covalently linked porphyrin antennae: Synthesis, characterization and photophysical properties J. Mater. Chem. 21 109

    Article  CAS  Google Scholar 

  36. Zdrojek M, Gebicki W, Jastrzebski C, Melin T and Huczko A 2004 Studies of multiwall carbon nanotubes using Raman spectroscopy and atomic force microscopy Solid State Phenomena 99 1

    Google Scholar 

  37. Chen Y, Huang Z H, Yue M and Kang F 2014 Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity Nanoscale 6 978

    Article  CAS  Google Scholar 

  38. Han T K, Fen L B, Nee N M, Ahmad R and Johan M R 2011 Optical studies on multiwalled carbon nanotubes via modified Wolff-Kishner reduction process Adv. Mater. Res. 194-196 618

    Google Scholar 

  39. Reichardt C 1994 Solvatochromic Dyes as Solvent Polarity Indicators Chem. Rev. 94 2319

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from COE-AMGT (MHRD, New Delhi) for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Yamuna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 3794 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhavathi, G., Arjun, M. & Yamuna, R. Synthesis, characterization and photoluminescence properties of tetra(aminophenyl) porphyrin covalently linked to multi-walled carbon nanotubes. J Chem Sci 129, 699–706 (2017). https://doi.org/10.1007/s12039-017-1295-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1295-1

Keywords

Navigation