Skip to main content

Advertisement

Log in

Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Graphene-like activated and non-activated carbon nanostructures were synthesized from various natural sources like sugar, rice husk and jute. These carbon nanostructures were characterized using SEM, FTIR and Raman spectroscopy, surface area and thermogravimetric analysis. The electrochemical studies of these carbon materials confirm their promising characteristics for supercapacitor applications. Activated carbon nanostructures exhibit higher specific capacitance compared to that of non-activated carbons (non-Ac sugar). The activated carbon (Ac-jute) exhibits maximum specific capacitance of 476 F/g at an applied current density of 0.2 A/g which is much higher than that of graphene oxide (GO).

Biomass (sugar, rice husk and jute) derived carbon nanostructures were shown to exhibit much higher specific capacitance than that of graphene oxide. Pseudocapacitance due to quinone-type functionalities in jute and rice husk-derived carbons were evident and contributed significantly to the overall specific capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Winter M and Brodd R J 2004 What are batteries, fuel cells, and supercapacitors? What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104 4245

    Article  CAS  Google Scholar 

  2. Burke A 2000 Ultracapacitors: Why, how, and where is the technology J. Power Sources 91 37

    Article  CAS  Google Scholar 

  3. Chee W K, Lim H N, Zainal Z, Huang N M, Harrison I and Andou Y 2016 Flexible graphene-based supercapacitors: A review J. Phys. Chem. C 120 4153

    Article  CAS  Google Scholar 

  4. Pandolfo A G and Hollenkamp A F 2006 Carbon properties and their role in supercapacitors J. Power Sources 157 11

    Article  CAS  Google Scholar 

  5. Zhang L L, Zhou R and Zhao X S 2009 Carbon-based materials as supercapacitor electrodes Chem. Soc. Rev. 38 2520

    Article  CAS  Google Scholar 

  6. Ji H, Zhao X, Qiao Z, Jung J, Zhu Y, Lu Y, Zhang L L, MacDonald A H and Ruoff R S 2014 Capacitance of carbon-based electrical double-layer capacitors Nat. Commun. 5 3317

    Google Scholar 

  7. Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A and Ruoff R S 2011 Carbon-based supercapacitors produced by activation of graphene Science 332 1537

    Article  CAS  Google Scholar 

  8. El-Kady M F, Strong V, Dubin S and Kaner R B 2012 Laser scribing of high-performance and flexible graphene-based electrochemical capacitors Science 335 1326

    Article  CAS  Google Scholar 

  9. Lee J, Kim J and Hyeon T 2006 Recent progress in the synthesis of porous carbon materials Adv. Mater. 18 2073

    Article  CAS  Google Scholar 

  10. Jiang H, Lee P S and Li C 2013 Three-dimensional carbon based nanostructures for advanced supercapacitors Energy Environ. Sci. 6 41

    Article  CAS  Google Scholar 

  11. Simon P and Gogotsi Y 2008 Materials for electrochemical capacitors Nat. Mater. 7 845

    Article  CAS  Google Scholar 

  12. Lv B, Zheng C, Xu L, Zhou X, Cao H and Liu Z 2015 Porous graphene-like materials prepared from hollow carbonaceous microspheres for supercapacitors ChemNanoMat 1 422

    Article  CAS  Google Scholar 

  13. Frackowiak E, Metenier K, Bertagna V and Beguin F 2000 Supercapacitor electrodes from multiwalled carbon nanotubes Appl. Phys. Lett. 77 2421

    Article  CAS  Google Scholar 

  14. Zhao L, Fan L Z, Zhou M Q, Guan H, Qiao S, Antonietti M and Titirici M M 2010 Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors Adv. Mater. 22 5202

    Article  CAS  Google Scholar 

  15. Raymundo-Pinero E, Kierzek K, Machnikowski J and Beguin F 2006 Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes Carbon 44 2498

    Article  CAS  Google Scholar 

  16. Li Z, Xu Z, Tan X, Wang H, Holt C M B, Stephenson T, Olsen C and Mitlin D 2013 Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors Energy Environ. Sci. 6 871

    Article  CAS  Google Scholar 

  17. Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, Stephenson T J, King’ondu C K, Holt C M B, Olsen B C, Tak J K, Harfield D, Anyia A O and Mitlin D 2013 Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy ACS Nano 7 5131

    Article  CAS  Google Scholar 

  18. Dutta S, Bhaumik A and Wu K C 2014 Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications Energy Environ. Sci. 7 3574

    Article  CAS  Google Scholar 

  19. Yun Y S, Cho S Y, Shim J, Kim B H, Chang S -J, Baek S J, Huh Y S, Tak Y, Park Y W, Park S and Jin H -J 2013 Microporous carbon nanoplates from regenerated silk proteins for supercapacitors Adv. Mater. 25 1993

    Article  CAS  Google Scholar 

  20. Ma Y, Guo Y, Zhou C and Wang C 2016 Biomass-derived dendritic-like porous carbon aerogels for supercapacitors Electrochim. Acta 210 897

    Article  CAS  Google Scholar 

  21. Liu B, Zhou X, Chen H, Liu Y and Li H 2016 Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance Electrochim. Acta 208 55

    Article  CAS  Google Scholar 

  22. Chang J, Gao Z, Wang X, Wu D, Xu F, Wang X, Guo Y and Jiang K 2015 Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes Electrochim. Acta 157 290

    Article  CAS  Google Scholar 

  23. Ling Z, Wang Z, Zhang M, Yu C, Wang G and Dong Y 2016 Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors Adv. Funct. Mater. 26 111

    Article  CAS  Google Scholar 

  24. Song S, Ma F, Wu G, Ma D, Geng W and Wan J 2015 Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors J. Mater. Chem. A 3 18154

    Article  CAS  Google Scholar 

  25. Le Van K and Luong Thi T T 2014 Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor Prog. Nat. Sci. Mater. Int. 24 191

    Article  CAS  Google Scholar 

  26. Teo E Y L, Muniandy L, Ng E -P, Adam F, Mohamed A R, Jose R and Chong K F 2016 High surface area activated carbon from rice husk as a high performance supercapacitor electrode Electrochim. Acta 192 110

    Article  CAS  Google Scholar 

  27. Jiang L, Nelson G W, Han S O, Kim H, Sim I N and Foord J S 2016 Natural cellulose materials for supercapacitors Electrochim. Acta 192 251

    Article  CAS  Google Scholar 

  28. Ojha K, Saha S, Kolev H, Kumar B and Ganguli A K 2016 Composites of graphene-Mo2C rods: Highly active and stable electrocatalyst for hydrogen evolution reaction Electrochim. Acta 193 268

    Article  CAS  Google Scholar 

  29. Wang J and Kaskel S 2012 KOH activation of carbon-based materials for energy storage J. Mater. Chem. 22 23710

    Article  CAS  Google Scholar 

  30. Deng J, Xiong T, Wang H, Zheng A and Wang Y 2016 Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons ACS Sustain. Chem. Eng. 4 3750

    Article  CAS  Google Scholar 

  31. Wannapeera J, Worasuwannarak N and Pipatmanomai S 2007 Product yields and characteristics of rice husk, rice straw and corncob during fast pyrolysis in a drop-tube/ fixed-bed reactor Songklanakarin J. Sci. Technol. 30 393

    Google Scholar 

  32. Wang W, Cai Z and Yu J 2008 Study on the chemical modification process of jute fiber J. Eng. Fibers Fabr. 3 1

    CAS  Google Scholar 

  33. Del Rio J C, Rencoret J, Marques G, Li J, Gellerstedt G, Jesus J -B, Martinez A T and Gutierrez A 2009 Structural characterization of the lignin from jute (corchorus capsuiaris) fibers J. Agric. Food Chem. 57 10271

    Article  CAS  Google Scholar 

  34. Pham V H, Gebre T and Dickerson J H 2015 Facile electrodeposition of reduced graphene oxide hydrogels for high-performance supercapacitors Nanoscale 7 5947

    Article  CAS  Google Scholar 

  35. Varley T S, Hirani M, Harrison G, Holt K B, Holt K B, Ziegler C, Caruana D J, Zang J, Millán-Barrios E J, Hu J, Foord J S, Holt K B, Hongthani W, Fermin D J, Zang J B, Wang Y H, Bian L Y, Zhang J H, Meng F W et al. 2014 Nanodiamond surface redox chemistry: Influence of physicochemical properties on catalytic processes Faraday Discuss. 172 349

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AKG wants to thank DST and DeitY, Govt. of India for financial support. KO thanks UGC, Govt. of India for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ASHOK K GANGULI.

Additional information

Supplementary Information (SI)

FTIR, Raman spectrum and TGA data are provided in the supplementary information which is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 237 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

OJHA, K., KUMAR, B. & GANGULI, A.K. Biomass derived graphene-like activated and non-activated porous carbon for advanced supercapacitors. J Chem Sci 129, 397–404 (2017). https://doi.org/10.1007/s12039-017-1248-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1248-8

Keywords

Navigation