Skip to main content

Advertisement

Log in

miR-200a-3p promotes β-Amyloid-induced neuronal apoptosis through down-regulation of SIRT1 in Alzheimer’s disease

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The aberrantly expressed microRNAs (miRNAs) including miR-200a-3p have been reported in the brains of Alzheimer’s disease (AD) patients in recent researches. Nevertheless, the role of miR-200a-3p in AD has not been characterized. The purpose of this study was to examine whether miR-200a-3p regulated β-Ameyloid (Aβ)-induced neuronal apoptosis by targeting SIRT1, a known anti-apoptotic protein. An increased level of miR-200a-3p and a decreased level of SIRT1 in the hippocampus of APPswe/PSΔE9 mice (a model for AD) were observed. To construct an in vitro cell model of AD, PC12 cells were cultured in presence of Aβ25-35. The results of flow cytometry analysis showed that the apoptosis rate and cleaved-caspase-3 expression in PC12 cells exposed to Aβ25-35 were remarkably increased, but the apoptosis rate and cleaved-caspase-3 activity were decreased when cells were transfected with anti-miR-200a-3p. On the other hand, MTT assay showed that the cell survival rate was increased in the Aβ25-35 + anti-miR-200a-3p group compared with the Aβ25-35 + anti-miR-NC group. Dual-luciferase reporter gene assay validated the predicted miR-200a-3p binding sites in the 3′-UTR of SIRT1 mRNA. In addition, downregulation of SIRT1 promoted Aβ25-35-induced neuronal apoptosis and cleaved-caspase-3 level in PC12 cells, whereas anti-miR-200a-3p reversed these effects. Knockdown of SIRT1 decreased the inhibitory effect of Aβ25-35 on cell viability, while anti-miR-200a-3p attenuated this effect. Overall, the results suggest that suppression of miR-200a-3p attenuates Aβ25-35-induced apoptosis in PC12 cells by targeting SIRT1. Thus, miR-200a-3p may be a potential therapeutic target for treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Alzheimer’s A 2015 Alzheimer’s disease facts and figures. Alzheimers Dement. 11 332–384

    Article  Google Scholar 

  • Benilova I, Karran E and De Strooper B 2012 The toxic A [beta] oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci. 15 349–357

    Article  CAS  PubMed  Google Scholar 

  • Bordone L and Guarente L 2005 Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat. Rev. Mol. Cell Biol. 6 298–305

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, et al. 2004 Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 303 2011–2015

    Article  CAS  Google Scholar 

  • Chen Z, Li Y, Zhang H, et al. 2010 Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 29 4362–4368

    Article  CAS  PubMed  Google Scholar 

  • Denu JM 2005 The Sir2 family of protein deacetylases. Curr. Opin. Chem. Biol. 9 431–440

    Article  CAS  PubMed  Google Scholar 

  • Eades G, Yang M, Yao Y, et al. 2011 miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J. Biol. Chem. 286 40725–40733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Wang WY, Mao YW, et al. 2010 A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature. 466 1105–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hébert SS, Horré K, Nicolaï L, et al. 2008 Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc. Natl. Acad. Sci. U S A. 105 6415–6420

    Article  PubMed  PubMed Central  Google Scholar 

  • Izaurralde E 2015 Breakers and blockers—miRNAs at work. Science. 349 380–382

    Article  CAS  PubMed  Google Scholar 

  • Kiko T, Nakagawa K, Tsuduki T, et al. 2014 MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer’s disease. J. Alzheimers Dis. 39 253–259

    CAS  PubMed  Google Scholar 

  • Klementiev B ,Novikova T, Novitskaya V, et al. 2007 A neural cell adhesion molecule–derived peptide reduces neuropathological signs and cognitive impairment induced by Aβ 25-35. Neuroscience. 145 209–224

    Article  CAS  PubMed  Google Scholar 

  • Kume S, Haneda M, Kanasaki K, et al. 2007 SIRT1 inhibits transforming growth factor β-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J. Biol. Chem. 282 151–158

    Article  CAS  PubMed  Google Scholar 

  • Lau P, Bossers K, Janky R, et al. 2013 Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol. Med. 5 1613–1634

    Article  CAS  PubMed Central  Google Scholar 

  • Lema C and Cunningham MJ 2010 MicroRNAs and their implications in toxicological research. Toxicol. Lett. 198 100–105

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yu J, Jiang L, Wang A, et al. 2009 MicroRNA-222 regulates cell invasion by targeting matrix metalloproteinase 1 (MMP1) and manganese superoxide dismutase 2 (SOD2) in tongue squamous cell carcinoma cell lines. Cancer Genomics Proteomics. 6 131–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lukiw WJ 2007 Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport. 18 297–300

    Article  CAS  PubMed  Google Scholar 

  • Pfister JA, Ma C, Morrison BE, et al. 2008 Opposing effects of sirtuins on neuronal survival: SIRT1-mediated neuroprotection is independent of its deacetylase activity. PLoS ONE. 3 e4090

    Article  PubMed  PubMed Central  Google Scholar 

  • Revollo JR and Li X 2013 The ways and means that fine tune Sirt1 activity. Trends Biochem. Sci. 38 160–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar GM and Walsh DM 2009 Alzheimer’s disease: synaptic dysfunction and Abeta. Mol. Neurodegener. 4 48

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Jia N, Wang W, et al. 2014 Activation of SIRT1 by curcumin blocks the neurotoxicity of amyloid-β 25–35 in rat cortical neurons. Biochem. Biophys. Res. Commun. 448 89–94

    Article  CAS  PubMed  Google Scholar 

  • Tanno M, Kuno A, Yano T, et al. 2010 Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J. Biol. Chem. 285 8375–8382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WX, Rajeev BW, Stromberg AJ, et al. 2008 The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme1. J. Neurosci. 28 1213–1223

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Su B, Siedlak SL, et al. 2008 Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc. Natl. Acad. Sci. U S A. 105 19318–19323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamakuchi M, Ferlito M and Lowenstein CJ 2008 miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. U S A. 105 13421–13426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liu C, Wang J, et al. 2016 MiR-299-5p regulates apoptosis through autophagy in neurons and ameliorates cognitive capacity in APPswe/PS1dE9 mice. Sci. Rep. 6 24566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Yang Y, Wang Y, et al. 2011 MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1. Cardiovasc. Res. 92 75–84

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (81401062, 81601123), and Grant from the Education Department of Henan Province (15A310003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Xiu Lu.

Additional information

Corresponding editor: Ullas Kolthur

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, QS., Liu, W. & Lu, GX. miR-200a-3p promotes β-Amyloid-induced neuronal apoptosis through down-regulation of SIRT1 in Alzheimer’s disease. J Biosci 42, 397–404 (2017). https://doi.org/10.1007/s12038-017-9698-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-017-9698-1

Keywords

Navigation