Skip to main content
Log in

Functional adaptation and phenotypic plasticity at the cellular and whole plant level

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The ability to adaptively alter morphological, anatomical, or physiological functional traits to local environmental variations using external environmental cues is especially well expressed by all terrestrial and most aquatic plants. A ubiquitous cue eliciting these plastic phenotypic responses is mechanical perturbation (MP), which can evoke dramatic differences in the size, shape, or mechanical properties of conspecifics. Current thinking posits that MP is part of a very ancient “stress-perception response system” that involves receptors located at the cell membrane/cell wall interface capable of responding to a broad spectrum of stress-inducing factors. This hypothesis is explored here from the perspective of cell wall evolution and the control of cell wall architecture by unicellular and multicellular plants. Among the conclusions that emerge from this exploration is the perspective that the plant cell is phenotypically plastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albersheim P, Darvill A, Roberts K, Staeheln L A and Varner J E 1997 Do the structures of cell wall polysaccharides define their mode of synthesis?; Plant Physiol. 113 1–3

    Article  CAS  Google Scholar 

  • Albrecht T, Groth B, Xia Z Q, Luxem M, Liss H, Andert L and Spengler P 1993 Evidence for the involvement of jasmonates and their octadecanoid precursors in the tendril coiling response of Bryonia dioica; Phytochemistry 32 591–600

    Article  Google Scholar 

  • Baluska F and Hlavacka 2005 Plant formins come of age: something special about cross-walls; New Phytol. 168 499–503

    Article  CAS  Google Scholar 

  • Biro, R L, Hunt E R, Erner Y and Jaffe M J 1980 Thigmomorphogenesis: changes in cell division and elongation in the internodes of mechanically perturbed or etherel-treated bean plants; Ann. Bot. 45 655–664

    Article  Google Scholar 

  • Braam J 2005 In touch: plant responses to mechanical stimuli; New Phytol. 165 373–389

    Article  Google Scholar 

  • Braam J, Sistrunk M. L, Polisensky D H, Xu W, Purugganan M, Antosiewicz D M, Cambell P and Johnson K A 1997 Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes; Planta 203 S35–S41

    Article  CAS  Google Scholar 

  • Carpita N, McCann M and Griffing L R 1996 The plant extracellular matrix: news from the cell’s frontier; Plant Cell 8 1451–1463

    Article  CAS  Google Scholar 

  • Cosgrove D J 1996 Plant cell enlargement and the action of expansins; BioEssays 18 533–540

    Article  CAS  Google Scholar 

  • Crook M J and Ennos A R 1996 Mechanical differences between free-standing and supported wheat plants, Triticum aestivum L.; Ann. Bot. 77 197–202

    Article  Google Scholar 

  • Delmer D P 1999 Cellulose biosynthesis: Exciting times for a difficult field; Ann. Rev. Plant Physiol. Plant Molec. Biol. 50 245–276

    Article  CAS  Google Scholar 

  • DeWitt T J and Scheiner S M 2004 Phenotypic plasticity (New York: Oxford University Press)

    Google Scholar 

  • Ding J P and Pickard B G 1993 Mechanosensory calcium selective cation channels in epidermal cells; Plant J. 3 83–110

    Article  CAS  Google Scholar 

  • Demidchik V and Maathuis F J M 2007 Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development; New Phytol. 175 387–404

    Article  CAS  Google Scholar 

  • Ennos A R 1991 The mechanics of anchorage in wheat Triticum aestivum L. II. The anchorage of mature wheat against lodging; J. Exp. Bot. 42 1607–1614

    Article  Google Scholar 

  • Fasano J M, Massa G D and Gilroy S 2002 Ionic signaling in plant responses to gravity and touch; J. Plant Growth Regul. 21 71–88

    Article  CAS  Google Scholar 

  • Gartner B L 1994 Root biomechanics and whole plant allocation patterns: responses of tomato plants to stem flexure; J. Exp. Bot. 45 1647–1654

    Article  CAS  Google Scholar 

  • Green P B 1992 Pattern formation in shoots: a likely role for minimal energy configurations of the tunica; Int. J. Plant Sci. (formerly Bot. Gaz.) 153 S59–S75

    Article  Google Scholar 

  • Haswell E S 2007 MscS-like proteins in plants; Curr. Top. Membr. 58 329–359

    Article  CAS  Google Scholar 

  • Himmelspach R, Williamson R E and Wasteneys G O 2003 Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization; Plant J. 36 565–575

    Article  CAS  Google Scholar 

  • Humphrey T V, Bonetta D T and Goring D R 2007 Sentinels at the wall: cell wall receptors and sensors; New Phytol. 176 7–21

    Article  CAS  Google Scholar 

  • Ingber D E 2003 Tensegrity II. How structural networks influence cellular information processing networks; J. Cell Sci. 116 1397–1408

    Article  CAS  Google Scholar 

  • Jacobs M R 1954 The effect of wind sway on the form and development of Pinus radiata Don; Aust. J. Bot. 2 35–51

    Article  Google Scholar 

  • Jaffe M J 1973 Thigmomorphogenesis: the response of plant growth and development to mechanical stress; Planta 114 143–157

    Article  CAS  Google Scholar 

  • Jaffe M J, Telewski F T and Cooke P W 1984 Thigmomorphogenesis: on the mechanical properties of mechanically perturbed bean Plants; Physiol. Plant. 62 73–78

    Article  CAS  Google Scholar 

  • Jaffe, M J, Leopold A C and Staples R C 2002 Thigmo responses in plants and fungi; Am. J. Bot. 89 375–382

    Article  Google Scholar 

  • Kiba A, Sugimoto M, Toyoda K, Ichinose Y, Yamada T and Shiraishi T 1998 Interaction between cell wall and plasma membrane via RGD motif is implicated in plant defense responses; Plant Cell Physiol. 39 1245–1249

    Article  CAS  Google Scholar 

  • Kimura S and Itoh A 1996 New cellulose synthesizing complexes (terminal complexes) involved in animal cellulose biosynthesis in the tunicate Metandrocarpa uedai; Protoplasma 194 151–163

    Article  CAS  Google Scholar 

  • Knight T A 1811 On the causes which influence the direction of the growth of roots; Philos. Trans. R. Soc. London 1811 209–219

    Google Scholar 

  • Kurek I, Kawagoe Y, Jacob-Wilk D, Doblin M and Delmer D 2003 Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains; Proc. Natl. Acad. Sci. USA 99 11109–11114

    Article  Google Scholar 

  • Kutschera U and Niklas K J 2007 The epidermal-growth-control theory of stem elongation: an old and new perspective; J. Plant. Physiol. 164 1395–1406

    Article  CAS  Google Scholar 

  • Lang-Pauluzzi I and Gunning B E S 2000 A plasmolytic cycle: the fate of cytoskeletal elements; Protoplasma 212 174–183

    Article  Google Scholar 

  • Lintilhac P M and Veseky T B 1981 Mechanical stress and cell wall orientation in plants. II. The application of controlled directional stress to growing plants, with a discussion on the nature of the wound reaction; Am. J. Bot. 68 1222–1230

    Article  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, et al. 2007 Arabidopsis plasma membrane protein crutial for Ca2+ influx and touch sensing in roots. Proc. Natl. Acad. Sci. USA 104 3639–3644

    Article  CAS  Google Scholar 

  • Margulis L 1981 Symbiosis in cell evolution (San Francisco: W H Freeman)

    Google Scholar 

  • Martinac B 2007 3.5 billion years of mechanosensory transduction: structure and function of mechanosensitive channels in prokaryotes; Curr. Top. Membr. 58 26–57

    Google Scholar 

  • Niklas K J 1992 Plant biomechanics (Chicago: University of Chicago Press)

    Google Scholar 

  • Niklas K J 1998 Effects of vibration on mechanical properties and biomass allocation pattern of Capsella bursa-pastoris (Cruciferae); Ann. Bot. 82 147–156

    Article  Google Scholar 

  • Niklas K J 2004 The cell walls that bind the tree of life; BioScience 54 831–841

    Article  Google Scholar 

  • Nobles D R, Romanovicz D K and Brown R M Jr 2001 Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase?; Plant Physiol. 127 529–542

    Article  CAS  Google Scholar 

  • Örvar B L, Sangwan V, Omann F and Dhindsa R S 2000 Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity; Plant J. 23 785–794

    Article  Google Scholar 

  • Pickard B G 2007 Delivering force and amplifying signals in plant mechanosensing; Curr. Top. Membr. 58 361–392

    Article  CAS  Google Scholar 

  • Popper Z A 2008 Evolution and diversity of green plant cell walls; Curr. Opin. Plant Biol. 11 1–7

    Article  Google Scholar 

  • Richmond T A and Somerville C R 2000 The cellulose synthase superfamily; Plant Physiol. 124 495–498

    Article  CAS  Google Scholar 

  • Roberts A W, Roberts E M and Delmer D P 2002 Cellulose synthase (CesA) genes in the green alga Mesotaenium caldariorum; Eukaryotic Cell 1 847–855

    Article  CAS  Google Scholar 

  • Römling U 2002 Molecular biology of cellulose production in bacteria; Res. Microbiol. 153 205–212

    Article  Google Scholar 

  • Sachs J 1878 Über die Anordnung der Zellen in jüngsten Pflanzenteilen; Arb. Bot. Inst.Wurzburg 2 46–104

    Google Scholar 

  • Schopfer P 2006 Biomechanics of plant growth; Am. J. Bot. 93 1415–1425

    Article  Google Scholar 

  • Seagull R W 1991 Role of the cytoskeletal elements in organized wall microfibril deposition; in Biosynthesis and biodegradation of cellulose (eds) C H Haigler and P J Weimer (New York: Marcel Dekker) pp 143–163

    Google Scholar 

  • Shimmen T 2001 Involvement of receptor potentials and action potentials in mechano-perception in plants; Aust. J. Plant Physiol. 28 567–576

    CAS  Google Scholar 

  • Smith L G 2003 Cytoskeletal control of plant cell shape: Getting the fine points; Curr. Opin. Plant Biol. 6 63–73

    Article  Google Scholar 

  • Staehelin L A and Giddings T H Jr 1982 Membrane mediated control of cell wall microfibrillar order; in Developmental order: its origin and regulation (eds) S Subtelny and P B Green (New York: A R Liss) pp 133–147

    Google Scholar 

  • Stebbins G L 1992 Comparative aspects of plant morphogenesis: a cellular, molecular, and evolutionary approach; Am. J. Bot. 79 589–598

    Article  CAS  Google Scholar 

  • Sultan S E and Bazzaz F A 1993 Phenotypic plasticity in Polygonum persicaria. III. The evolution of ecological breadth for nutrient environment; Evolution 47 1032–1049

    Article  CAS  Google Scholar 

  • Taiz L and Zeiger E 2002 Plant physiology (Sunderland: Sinauer)

    Google Scholar 

  • Tandy G 1933–1934 Experimental taxonomy in marine algae, with special reference to Caulerpa; Proc. Linn. Soc. London 63–64

  • Telewski F W 2006 A unified hypothesis of mechanoperception in plants; Am. J. Bot. 93 1466–1476

    Article  Google Scholar 

  • Telewski F W and Jaffe M J 1986 Thigmomorphogenesis: field and laboratory studies of Abies frazei in response to wind or mechanical perturbation; Physiol. Plant. 66 211–218

    Article  CAS  Google Scholar 

  • Thompson D W 1948 On growth and form (Cambridge: Cambridge University Press)

    Google Scholar 

  • Trewavas A and Knight M 1994 Mechanical signaling, calcium and plant form; Plant Mol. Biol. 26 1329–1341

    Article  CAS  Google Scholar 

  • Tsekos I 1999 The sites of cellulose synthesis in algae: diversity and evolution of cellulose-synthesizing enzyme complexes; J. Phycol. 35 635–655

    Article  CAS  Google Scholar 

  • Vergara C E and Carpita N C 2001 β-D-glycan synthases and the CesA gene family: Lessons to be learned from the mixedlinkage (1–3), (1–4) β-Dglucan synthase; Plant Mol. Biol. 47 145–160

    Article  CAS  Google Scholar 

  • Wayne R, Staves M P and Leopold A C 1992 The contribution of the extracellular matrix to gravisensing in characean algae; J. Cell Sci. 101 611–623

    CAS  PubMed  Google Scholar 

  • Wiedemeiyer A M D, Judy-March J E, Hocart C H, Wasteneys G O, Williamson R E and Baskin T I 2002 Mutant alleles of Arabidopsis RADIALLY SWOLLEN 4 and 7 reduce growth anisotropy without altering transverse orientation of cortical microtubules or cellulose microfibrils; Development 129 4821–4830

    Google Scholar 

  • Wymer C and Lloyd C 1996 Dynamic microtubules: Implications for cell wall patterns; Trends Plant Sci. 1 222–228

    Article  Google Scholar 

  • Xiong L and Zhu J-K 2002 Molecular and genetic aspects of plant responses to osmotic stress; Plant Cell Environ. 25 131–139

    Article  CAS  Google Scholar 

  • Xu W, Purugganan M M, Polisensky D H, Antosiewicz D M, Fry S C and Braam J 1995 Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase; Plant Cell 7 1555–1567

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl J. Niklas.

Additional information

This article, designated JBEP-2, is published in affiliation with the Embryo Project ( http://embryo.asu.edu/index.php ), an international consortium of biologists, historians and philosophers of science that examines the changing scientific understanding of embryos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niklas, K.J. Functional adaptation and phenotypic plasticity at the cellular and whole plant level. J Biosci 34, 613–620 (2009). https://doi.org/10.1007/s12038-009-0079-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0079-2

Keywords

Navigation