Skip to main content

Advertisement

Log in

The Involvement of Post-Translational Modifications in Regulating the Development and Progression of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Post-translational modifications (PTMs) have been recently reported to be involved in the development and progression of Alzheimer’s disease (AD). In detail, PTMs include phosphorylation, glycation, acetylation, sumoylation, ubiquitination, methylation, nitration, and truncation, which are associated with pathological functions of AD-related proteins, such as β-amyloid (Aβ), β-site APP-cleavage enzyme 1 (BACE1), and tau protein. In particular, the roles of aberrant PTMs in the trafficking, cleavage, and degradation of AD-associated proteins, leading to the cognitive decline of the disease, are summarized under AD conditions. By summarizing these research progress, the gaps will be filled between PMTs and AD, which will facilitate the discovery of potential biomarkers, leading to the establishment of novel clinical intervention methods against AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1. https://doi.org/10.1038/srep00090

  2. Ren RJ, Dammer EB, Wang G, Seyfried NT, Levey AI (2014) Proteomics of protein post-translational modifications implicated in neurodegeneration. Transl Neurodegener 3(1):23. https://doi.org/10.1186/2047-9158-3-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Santos AL, Lindner AB (2017) Protein posttranslational modifications: roles in aging and age-related disease. Oxidative Med Cell Longev 2017:5716409. https://doi.org/10.1155/2017/5716409

    Article  CAS  Google Scholar 

  4. Didonna A, Benetti F (2015) Post-translational modifications in neurodegeneration. AIMS. Biophysics 3(1):27–49

    Article  Google Scholar 

  5. Matthias M, Jensen O (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21(3):255–261

    Article  Google Scholar 

  6. Atwood CS, Martins RN, Smith MA, Perry G (2002) Senile plaque composition and posttranslational modification of amyloid-beta peptide and associated proteins. Peptides 23(7):1343–1350. https://doi.org/10.1016/s0196-9781(02)00070-0

    Article  CAS  PubMed  Google Scholar 

  7. Smith MA, Sayre LM, Monnier VM, Perry G (1996) Oxidative posttranslational modifications in Alzheimer disease. Molecular and chemical neuropathology / sponsored by the International Society for Neurochemistry and the World Federation of Neurology and research groups on neurochemistry and cerebrospinal fluid 28(1–3):41

    CAS  Google Scholar 

  8. Thomas SN, Funk KE, Wan Y, Liao Z, Davies P, Kuret J, Yang AJ (2012) Dual modification of Alzheimer's disease PHF-tau protein by lysine methylation and ubiquitylation: a mass spectrometry approach. Acta Neuropathol 123(1):105–117. https://doi.org/10.1007/s00401-011-0893-0

    Article  CAS  PubMed  Google Scholar 

  9. Zhang YW, Thompson R, Zhang H, Xu H (2011) APP processing in Alzheimer's disease. Mol brain 4:3. https://doi.org/10.1186/1756-6606-4-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tao PF, Huang HC (2019) Regulation of AβPP glycosylation modification and roles of glycosylation on AβPP cleavage in Alzheimer's disease. ACS Chem Neurosci 10(5):2115–2124. https://doi.org/10.1021/acschemneuro.8b00574

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki T, Nakaya T (2008) Regulation of amyloid beta-protein precursor by phosphorylation and protein interactions. J Biol Chem 283(44):29633–29637. https://doi.org/10.1074/jbc.R800003200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oliveira J, Costa M, de Almeida MSC, da Cruz ESOAB, Henriques AG (2017) Protein phosphorylation is a key mechanism in Alzheimer's disease. Journal of Alzheimer's Disease : JAD 58(4):953–978. https://doi.org/10.3233/jad-170176

    Article  CAS  PubMed  Google Scholar 

  13. Patil GV, Joshi RS, Kazi RS, Kulsange SE, Kulkarni MJ (2020) A possible role of glycation in the regulation of amyloid β precursor protein processing leading to amyloid β accumulation. Med Hypotheses 142:109799. https://doi.org/10.1016/j.mehy.2020.109799

    Article  CAS  PubMed  Google Scholar 

  14. Wen W, Li P, Liu P, Xu S, Wang F, Huang JH (2022) Post-translational modifications of BACE1 in Alzheimer's disease. Curr Neuropharmacol 20(1):211–222. https://doi.org/10.2174/1570159x19666210121163224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ledo JH, Liebmann T, Zhang R, Chang JC, Azevedo EP, Wong E, Silva HM, Troyanskaya OG, Bustos V, Greengard P (2021) Presenilin 1 phosphorylation regulates amyloid-β degradation by microglia. Mol Psychiatry 26(10):5620–5635. https://doi.org/10.1038/s41380-020-0856-8

    Article  CAS  PubMed  Google Scholar 

  16. Emendato A, Milordini G, Zacco E, Sicorello A, Dal Piaz F, Guerrini R, Thorogate R, Picone D, Pastore A (2018) Glycation affects fibril formation of Aβ peptides. J Biol Chem 293(34):13100–13111. https://doi.org/10.1074/jbc.RA118.002275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nam E, Han J, Choi S, Lim MH (2021) Distinct impact of glycation towards the aggregation and toxicity of murine and human amyloid-β. Chem Commun (Camb) 57(62):7637–7640. https://doi.org/10.1039/d1cc02695j

    Article  CAS  PubMed  Google Scholar 

  18. Johnson GV, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117(Pt 24):5721–5729. https://doi.org/10.1242/jcs.01558

    Article  CAS  PubMed  Google Scholar 

  19. Park S, Lee JH, Jeon JH, Lee MJ (2018) Degradation or aggregation: the ramifications of post-translational modifications on tau. BMB Rep 51(6):265–273. https://doi.org/10.5483/bmbrep.2018.51.6.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Avila J (2006) Tau phosphorylation and aggregation in Alzheimer's disease pathology. FEBS Lett 580(12):2922–2927. https://doi.org/10.1016/j.febslet.2006.02.067

    Article  CAS  PubMed  Google Scholar 

  21. Lee G, Thangavel R, Sharma VM, Litersky JM, Bhaskar K, Fang SM, Do LH, Andreadis A, Van Hoesen G, Ksiezak-Reding H (2004) Phosphorylation of tau by fyn: implications for Alzheimer's disease. J Neurosci 24(9):2304–2312. https://doi.org/10.1523/jneurosci.4162-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17(1):5–21. https://doi.org/10.1038/nrn.2015.1

    Article  CAS  PubMed  Google Scholar 

  23. Kelley AR, Bach SBH, Perry G (2019) Analysis of post-translational modifications in Alzheimer's disease by mass spectrometry. Biochimica et biophysica acta Molecular basis of disease 1865 8:2040–2047. https://doi.org/10.1016/j.bbadis.2018.11.002

    Article  CAS  Google Scholar 

  24. Ramesh M, Gopinath P, Govindaraju T (2020) Role of post-translational modifications in Alzheimer's disease. Chembiochem : a European journal of chemical biology 21(8):1052–1079. https://doi.org/10.1002/cbic.201900573

    Article  CAS  PubMed  Google Scholar 

  25. Simic G, Babic Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milosevic N, Bazadona D, Buee L, de Silva R, Di Giovanni G, Wischik C, Hof PR (2016) Tau protein hyperphosphorylation and aggregation in Alzheimer's disease and other Tauopathies, and possible neuroprotective strategies. Biomolecules 6(1):6. https://doi.org/10.3390/biom6010006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee G, Thangavel R, Sharma VM, Litersky JM, Bhaskar K, Fang SM, Do LH, Andreadis A, Van GH, Ksiezakreding H (2004) Phosphorylation of tau by Fyn: implications for Alzheimer's disease. J Neurosci 24(9):2304–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ittner A, Chua SW, Bertz J, Volkerling A, van der Hoven J, Gladbach A, Przybyla M, Bi M, van Hummel A, Stevens CH, Ippati S, Suh LS, Macmillan A, Sutherland G, Kril JJ, Silva AP, Mackay JP, Poljak A, Delerue F et al (2016) Site-specific phosphorylation of tau inhibits amyloid-beta toxicity in Alzheimer's mice. Science 354(6314):904–908. https://doi.org/10.1126/science.aah6205

    Article  CAS  PubMed  Google Scholar 

  28. Regan P, Piers T, Yi JH, Kim DH, Huh S, Park SJ, Ryu JH, Whitcomb DJ, Cho K (2015) Tau phosphorylation at serine 396 residue is required for hippocampal LTD. J Neurosci 35(12):4804–4812. https://doi.org/10.1523/JNEUROSCI.2842-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee MS, Kao SC, Lemere CA, Xia W, Tseng HC, Zhou Y, Neve R, Ahlijanian MK, Tsai LH (2003) APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 163(1):83–95. https://doi.org/10.1083/jcb.200301115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vieira SI, Rebelo S, Esselmann H, Wiltfang J, Lah J, Lane R, Small SA, Gandy S, da Cruz ESEF, da Cruz ESOA (2010) Retrieval of the Alzheimer's amyloid precursor protein from the endosome to the TGN is S655 phosphorylation state-dependent and retromer-mediated. Mol Neurodegener 5:40. https://doi.org/10.1186/1750-1326-5-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer's disease. Nat Med 2(8):871–875. https://doi.org/10.1038/nm0896-871

    Article  CAS  PubMed  Google Scholar 

  32. Williamson RL, Laulagnier K, Miranda AM, Fernandez MA, Wolfe MS, Sadoul R, Di Paolo G (2017) Disruption of amyloid precursor protein ubiquitination selectively increases amyloid beta (Abeta) 40 levels via presenilin 2-mediated cleavage. J Biol Chem 292(48):19873–19889. https://doi.org/10.1074/jbc.M117.818138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cohen P (2002) The origins of protein phosphorylation. Nat Cell Biol 4(5):E127–E130. https://doi.org/10.1038/ncb0502-e127

    Article  CAS  PubMed  Google Scholar 

  34. Walter J, Capell A, Hung AY, Langen H, Schnlzer M, Thinakaran G, Sisodia SS, Selkoe DJ, Haass C (1997) Ectodomain phosphorylation of beta-amyloid precursor protein at two distinct cellular locations. Am Soc Biochem Mol Biol 3

  35. Tamayev R, Zhou D, D'Adamio L (2009) The interactome of the amyloid β precursor protein family members is shaped by phosphorylation of their intracellular domains. Mol Neurodegener 4(1):28–28

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gandy S, Czernik AJ, Greengard P (1988) Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci 85(16):6218–6221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Borg JP, Yang Y, Taddeo-Borg MD, Margolis B, Turner RS (1998) The X11α protein slows cellular amyloid precursor protein processing and reduces Aβ40 and Aβ42 secretion. Jbiolchem 273(24):14761–14766

    CAS  Google Scholar 

  38. Ando K, Oishi M, Takeda S, Iijima K, Isohara T, Nairn AC, Kirino Y, Greengard P, Suzuki T (1999) Role of phosphorylation of Alzheimer's amyloid precursor protein during neuronal differentiation. J Neurosci 19(11):4421–4427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Iijima KI, Ando K, Takeda S, Satoh Y, Seki T, Itohara S, Greengard P, Kirino Y, Nairn AC, Suzuki T (2010) Neuron-specific phosphorylation of Alzheimer's beta-amyloid precursor protein by cyclin-dependent kinase 5. J Neurochem 75(3):1085–1091

    Article  Google Scholar 

  40. Takahashi K, Niidome T, Akaike A, Kihara T, Sugimoto H (2008) Phosphorylation of amyloid precursor protein (APP) at Tyr687 regulates APP processing by alpha- and gamma-secretase. Biochem Biophys Res Commun 377(2):544–549. https://doi.org/10.1016/j.bbrc.2008.10.013

    Article  CAS  PubMed  Google Scholar 

  41. Song WJ, Son MY, Lee HW, Seo H, Kim JH, Chung SH (2015) Enhancement of BACE1 activity by p25/Cdk5-mediated phosphorylation in Alzheimer's disease. PLoS One 10(8):e0136950. https://doi.org/10.1371/journal.pone.0136950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun M, Zhang H (2017) Par3 and aPKC regulate BACE1 endosome-to-TGN trafficking through PACS1. Neurobiol Aging 60:129–140. https://doi.org/10.1016/j.neurobiolaging.2017.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Strooper BD, Beullens M, Contreras B, Levesque L, Craessaerts K, Cordell B, Moechars D, Bollen M, Fraser P, George-Hyslop PS (1997) Phosphorylation, subcellular localization, and membrane orientation of the Alzheimer's disease-associated presenilins. J Biol Chem 272(6):3590–3598

    Article  PubMed  Google Scholar 

  44. Kumar S, Walter J (2011) Phosphorylation of amyloid beta (Aβ) peptides – a trigger for formation of toxic aggregates in Alzheimer's disease. Aging 3(8):803–812

    Article  PubMed  PubMed Central  Google Scholar 

  45. Milton NGN (2001) Phosphorylation of amyloid-beta at the serine 26 residue by human cdc2 kinase. Neuroreport 12(17):3839–3844

    Article  CAS  PubMed  Google Scholar 

  46. Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15:112–119

    Article  CAS  PubMed  Google Scholar 

  47. Grundke-Iqbal I, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83(13):4913–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goedert M, Jakes R, Crowther RA, Six J, Lubke U, Vandermeeren M, Cras P, Trojanowski JQ, Lee VM (1993) The abnormal phosphorylation of tau protein at Ser-202 in Alzheimer disease recapitulates phosphorylation during development. Proc Natl Acad Sci U S A 90(11):5066–5070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Biernat J, Mandelkow EM, Schröter C, Lichtenberg-Kraag B, Steiner B, Berling B, Meyer H, Mercken M, Vandermeeren A, Goedert M (1992) The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule binding region. EMBO J 11(4):1593–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jin M, Shepardson N, Yang T, Chen G, Walsh D (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A 108(14):5819–5824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang DL, Ling ZQ, Cao FY, Zhu LQ, Wang JZ (2004) Melatonin attenuates isoproterenol-induced protein kinase a overactivation and tau hyperphosphorylation in rat brain. J Pineal Res 37(1):11–16. https://doi.org/10.1111/j.1600-079X.2004.00130.x

    Article  CAS  PubMed  Google Scholar 

  52. Wang D, Fu Q, Zhou Y, Xu B, Shi Q, Igwe B, Matt L, Hell JW, Wisely EV, Oddo S (2013) β2 adrenergic receptor, protein kinase a (PKA) and c-Jun N-terminal kinase (JNK) signaling pathways mediate tau pathology in Alzheimer disease models. J Biol Chem 288(15):10298–10307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yoshimura Y, Ichinose T, Yamauchi T (2003) Phosphorylation of tau protein to sites found in Alzheimer's disease brain is catalyzed by Ca2+/calmodulin-dependent protein kinase II as demonstrated tandem mass spectrometry. Neurosci Lett 353(3):185–188

    Article  CAS  PubMed  Google Scholar 

  54. Hanger DP, Hughes K, Woodgett JR, Brion JP, Anderton BH (1992) Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett 147(1):58

    Article  CAS  PubMed  Google Scholar 

  55. Sengupta A, Wu Q, Grundke-Iqbal I, Iqbal K, Singh TJ (1997) Potentiation of GSK-3-catalyzed Alzheimer-like phosphorylation of human tau by cdk5. Mol Cell Biochem 167(1–2):99–105

    Article  CAS  PubMed  Google Scholar 

  56. Sayas CL, Moreno-Flores MT, Avila J, Wandosell FF (1999) The neurite retraction induced by lysophosphatidic acid increases Alzheimer's disease-like tau phosphorylation. J Biol Chem 274(52):37046–37052

    Article  CAS  PubMed  Google Scholar 

  57. Hanger DP, Byers HL, Wray S, Leung KY, Anderton BH (2007) Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem 282(32):23645

    Article  CAS  PubMed  Google Scholar 

  58. Guo C, Wang P, Zhong ML, Wang T, Huang XS, Li JY, Wang ZY (2013) Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. Neurochem Int 62(2):165–172

    Article  CAS  PubMed  Google Scholar 

  59. Kesavapany S, Li BS, Pant HC (2003) Cyclin-dependent kinase 5 in neurofilament function and regulation. Neuro-Signals 12(4–5):252–264. https://doi.org/10.1159/000074627

    Article  CAS  PubMed  Google Scholar 

  60. Cork LC, Sternberger NH, Sternberger LA, Casanova MF, Struble RG, Price DL (1986) Phosphorylated neurofilament antigens in neurofibrillary tangles in Alzheimer's disease. J Neuropathol Exp Neurol 45(1):56–64. https://doi.org/10.1097/00005072-198601000-00005

    Article  CAS  PubMed  Google Scholar 

  61. Troncoso JC, Sternberger NH, Sternberger LA, Hoffman PN, Price DL (1986) Immunocytochemical studies of neurofilament antigens in the neurofibrillary pathology induced by aluminum. Brain Res 364(2):295–300. https://doi.org/10.1016/0006-8993(86)90842-5

    Article  CAS  PubMed  Google Scholar 

  62. Z. WJ, Tung YC, Wang YP, Li XT, Iqbal K, Grundke-Iqbal I (2001) Hyperphosphorylation and accumulation of neurofilament proteins in Alzheimer disease brain and in okadaic acid-treated SY5Y cells. FEBS Lett 507(1)81–87

  63. Caporaso GL, Gandy SE, Buxbaum JD, Ramabhadran TV, Greengard P (1992) Protein phosphorylation regulates secretion of Alzheimer beta/A4 amyloid precursor protein. Proc Natl Acad Sci U S A 89(April):3055–3059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Van Huynh T, Cole G, Katzman R, Huang KP, Saitoh T (1989) Reduced protein kinase C immunoreactivity and altered protein phosphorylation in Alzheimer's disease fibroblasts. Arch Neurol 46(11):1195–1199. https://doi.org/10.1001/archneur.1989.00520470049026

    Article  PubMed  Google Scholar 

  65. L. S, Wang X, Liu S, Wang Q, Wang J (2004) Bilateral injection of isoproterenol into hippocampus induces Alzheimer-like hyperphosphorylation of tau and spatial memory deficit in rat. FEBS Lett 579 (1):251–258

  66. Ying L, Fei L, Iqbal K, Grundke-Iqbal I, Gong CX (2008) Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett 582(2)

  67. Sternberger NH, Sternberger LA, Ulrich J (1985) Aberrant neurofilament phosphorylation in Alzheimer disease. Proc Natl Acad Sci 82(12):4274–4276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Song XJ, Zhou HY, Sun YY, Huang HC (2021) Phosphorylation and glycosylation of amyloid-β protein precursor: the relationship to trafficking and cleavage in Alzheimer's disease. Journal of Alzheimer's disease : JAD 84(3):937–957. https://doi.org/10.3233/jad-210337

    Article  CAS  PubMed  Google Scholar 

  69. Påhlsson P, Shakin-Eshleman SH, Spitalnik SL (1992) N-linked glycosylation of beta-amyloid precursor protein. Biochem Biophys Res Commun 189(3):1667–1673. https://doi.org/10.1016/0006-291x(92)90269-q

    Article  PubMed  Google Scholar 

  70. Yazaki M, Tagawa K, Maruyama K, Sorimachi H, Tsuchiya T, Ishiura S, Suzuki K (1996) Mutation of potential N-linked glycosylation sites in the Alzheimer's disease amyloid precursor protein (APP). Neurosci Lett 221(1):57–60. https://doi.org/10.1016/s0304-3940(96)13285-7

    Article  CAS  PubMed  Google Scholar 

  71. Saito F, Tani A, Miyatake T, Yanagisawa K (1995) N-linked oligosaccharide of beta-amyloid precursor protein (beta APP) of C6 glioma cells: putative regulatory role in beta APP processing. Biochem Biophys Res Commun 210(3):703–710. https://doi.org/10.1006/bbrc.1995.1716

    Article  CAS  PubMed  Google Scholar 

  72. Urano Y, Takahachi M, Higashiura R, Fujiwara H, Funamoto S, Imai S, Futai E, Okuda M, Sugimoto H, Noguchi N (2020) Curcumin derivative GT863 inhibits amyloid-Beta production via inhibition of protein N-glycosylation. Cells 9(2). https://doi.org/10.3390/cells9020349

  73. Griffith LS, Mathes M, Schmitz B (1995) Beta-amyloid precursor protein is modified with O-linked N-acetylglucosamine. J Neurosci Res 41(2):270–278. https://doi.org/10.1002/jnr.490410214

    Article  CAS  PubMed  Google Scholar 

  74. Perdivara I, Petrovich R, Allinquant B, Deterding LJ, Tomer KB, Przybylski M (2009) Elucidation of O-glycosylation structures of the beta-amyloid precursor protein by liquid chromatography-mass spectrometry using electron transfer dissociation and collision induced dissociation. J Proteome Res 8(2):631–642. https://doi.org/10.1021/pr800758g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Akasaka-Manya K, Kawamura M, Tsumoto H, Saito Y, Tachida Y, Kitazume S, Hatsuta H, Miura Y, Hisanaga SI, Murayama S, Hashimoto Y, Manya H, Endo T (2017) Excess APP O-glycosylation by GalNAc-T6 decreases Aβ production. J Biochem 161(1):99–111. https://doi.org/10.1093/jb/mvw056

    Article  CAS  PubMed  Google Scholar 

  76. Tomita S, Kirino Y, Suzuki T (1998) Cleavage of Alzheimer's amyloid precursor protein (APP) by secretases occurs after O-glycosylation of APP in the protein secretory pathway. Identification of intracellular compartments in which APP cleavage occurs without using toxic agents that interfere with protein metabolism. J Biol Chem 273(11):6277–6284. https://doi.org/10.1074/jbc.273.11.6277

    Article  CAS  PubMed  Google Scholar 

  77. McFarlane I, Georgopoulou N, Coughlan CM, Gillian AM, Breen KC (1999) The role of the protein glycosylation state in the control of cellular transport of the amyloid beta precursor protein. Neuroscience 90(1):15–25. https://doi.org/10.1016/s0306-4522(98)00361-3

    Article  CAS  PubMed  Google Scholar 

  78. Chun YS, Park Y, Oh HG, Kim TW, Yang HO, Park MK, Chung S (2015) O-GlcNAcylation promotes non-amyloidogenic processing of amyloid-beta protein precursor via inhibition of endocytosis from the plasma membrane. Journal of Alzheimer's disease : JAD 44(1):261–275. https://doi.org/10.3233/JAD-140096

    Article  CAS  PubMed  Google Scholar 

  79. Jacobsen KT, Iverfeldt K (2011) O-GlcNAcylation increases non-amyloidogenic processing of the amyloid-β precursor protein (APP). Biochem Biophys Res Commun 404(3):882–886. https://doi.org/10.1016/j.bbrc.2010.12.080

    Article  CAS  PubMed  Google Scholar 

  80. Kitazume S, Tachida Y, Kato M, Yamaguchi Y, Honda T, Hashimoto Y, Wada Y, Saito T, Iwata N, Saido T, Taniguchi N (2010) Brain endothelial cells produce amyloid {beta} from amyloid precursor protein 770 and preferentially secrete the O-glycosylated form. J Biol Chem 285(51):40097–40103. https://doi.org/10.1074/jbc.M110.144626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saido TC, Nakano M, Yamaguchi Y, Hashimoto Y, Staufenbiel M, Hatsuta H, Murayama S, Manya H, Endo T, Taniguchi N (2015) An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease. EMBO Mol Med 7(2):175–189. https://doi.org/10.15252/emmm.201404438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido TC, Taniguchi N (2016) Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J 473(1):21–30. https://doi.org/10.1042/BJ20150607

    Article  CAS  PubMed  Google Scholar 

  83. Moniruzzaman M, Ishihara S, Nobuhara M, Higashide H, Funamoto S (2018) Glycosylation status of nicastrin influences catalytic activity and substrate preference of gamma-secretase. Biochem Biophys Res Commun 502(1):98–103. https://doi.org/10.1016/j.bbrc.2018.05.126

    Article  CAS  PubMed  Google Scholar 

  84. Taniguchi N, Takahashi M, Kizuka Y, Kitazume S, Shuvaev VV, Ookawara T, Furuta A (2016) Glycation vs. glycosylation: a tale of two different chemistries and biology in Alzheimer's disease. Glycoconj J 33(4):487–497. https://doi.org/10.1007/s10719-016-9690-2

    Article  CAS  PubMed  Google Scholar 

  85. Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, Manogue K, Cerami A (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci U S A 91(11):4766–4770. https://doi.org/10.1073/pnas.91.11.4766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li XH, Du LL, Cheng XS, Jiang X, Zhang Y, Lv BL, Liu R, Wang JZ, Zhou XW (2013) Glycation exacerbates the neuronal toxicity of beta-amyloid. Cell Death Dis 4:e673. https://doi.org/10.1038/cddis.2013.180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Smith MA, Richey PL, Taneda S, Kutty RK, Sayre LM, Monnier VM, Perry G (1994) Advanced Maillard reaction end products, free radicals, and protein oxidation in Alzheimer's disease. Ann N Y Acad Sci 738:447–454. https://doi.org/10.1111/j.1749-6632.1994.tb21836.x

    Article  CAS  PubMed  Google Scholar 

  88. Takahashi M, Tsujioka Y, Yamada T, Tsuboi Y, Okada H, Yamamoto T, Liposits Z (1999) Glycosylation of microtubule-associated protein tau in Alzheimer's disease brain. Acta Neuropathol 97(6):635–641. https://doi.org/10.1007/s004010051040

    Article  CAS  PubMed  Google Scholar 

  89. Arnold CS, Johnson GV, Cole RN, Dong DL, Lee M, Hart GW (1996) The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J Biol Chem 271(46):28741–28744. https://doi.org/10.1074/jbc.271.46.28741

    Article  CAS  PubMed  Google Scholar 

  90. Smet-Nocca C, Broncel M, Wieruszeski JM, Tokarski C, Hanoulle X, Leroy A, Landrieu I, Rolando C, Lippens G, Hackenberger CP (2011) Identification of O-GlcNAc sites within peptides of the tau protein and their impact on phosphorylation. Mol BioSyst 7(5):1420–1429. https://doi.org/10.1039/c0mb00337a

    Article  CAS  PubMed  Google Scholar 

  91. Wang Z, Udeshi ND, O'Malley M, Shabanowitz J, Hunt DF, Hart GW (2010) Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Molecular & Cellular Proteomics : MCP 9(1):153–160. https://doi.org/10.1074/mcp.M900268-MCP200

    Article  CAS  PubMed  Google Scholar 

  92. Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc Natl Acad Sci U S A 101(29):10804–10809. https://doi.org/10.1073/pnas.0400348101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ledesma MD, Medina M, Avila J (1996) The in vitro formation of recombinant tau polymers: effect of phosphorylation and glycation. Mol Chem Neuropathol 27(3):249–258. https://doi.org/10.1007/BF02815107

    Article  CAS  PubMed  Google Scholar 

  94. Smith MA, Tabaton M, Perry G (1996) Early contribution of oxidative glycation in Alzheimer disease. Neurosci Lett 217(2–3):210–211

    Article  CAS  PubMed  Google Scholar 

  95. Ko LW, Ko EC, Nacharaju P, Liu WK, Chang E, Kenessey A, Yen SH (1999) An immunochemical study on tau glycation in paired helical filaments. Brain Res 830(2):301–313. https://doi.org/10.1016/s0006-8993(99)01415-8

    Article  CAS  PubMed  Google Scholar 

  96. Saez-Valero J, Sberna G, McLean CA, Masters CL, Small DH (1997) Glycosylation of acetylcholinesterase as diagnostic marker for Alzheimer's disease. Lancet 350(9082):929. https://doi.org/10.1016/S0140-6736(97)24039-0

    Article  CAS  PubMed  Google Scholar 

  97. Fodero LR, Saez-Valero J, McLean CA, Martins RN, Beyreuther K, Masters CL, Robertson TA, Small DH (2002) Altered glycosylation of acetylcholinesterase in APP (SW) Tg2576 transgenic mice occurs prior to amyloid plaque deposition. J Neurochem 81(3):441–448. https://doi.org/10.1046/j.1471-4159.2002.00902.x

    Article  CAS  PubMed  Google Scholar 

  98. Zhang Q, Ma C, Chin LS, Li L (2020) Integrative glycoproteomics reveals protein N-glycosylation aberrations and glycoproteomic network alterations in Alzheimer's disease. Sci Adv 6(40). https://doi.org/10.1126/sciadv.abc5802

  99. Akasaka-Manya K, Manya H (2020) The role of APP O-glycosylation in Alzheimer's disease. Biomolecules 10(11). https://doi.org/10.3390/biom10111569

  100. Bukke VN, Villani R, Archana M, Wawrzyniak A, Balawender K, Orkisz S, Ferraro L, Serviddio G, Cassano T (2020) The glucose metabolic pathway as a potential target for therapeutics: crucial role of glycosylation in Alzheimer's disease. Int J Mol Sci 21(20). https://doi.org/10.3390/ijms21207739

  101. Basurto-Islas G, Luna-Muñoz J, Guillozet-Bongaarts AL, Binder LI, Mena R, García-Sierra F (2008) Accumulation of aspartic acid421- and glutamic acid391-cleaved tau in neurofibrillary tangles correlates with progression in Alzheimer disease. J Neuropathol Exp Neurol 67(5):470–483. https://doi.org/10.1097/NEN.0b013e31817275c7

    Article  CAS  PubMed  Google Scholar 

  102. García-Sierra F, Mondragón-Rodríguez S, Basurto-Islas G (2008) Truncation of tau protein and its pathological significance in Alzheimer's disease. Journal of Alzheimer's disease : JAD 14(4):401–409. https://doi.org/10.3233/jad-2008-14407

    Article  PubMed  Google Scholar 

  103. Canu N, Dus L, Barbato C, Ciotti MT, Brancolini C, Rinaldi AM, Novak M, Cattaneo A, Bradbury A, Calissano P (1998) Tau cleavage and dephosphorylation in cerebellar granule neurons undergoing apoptosis. J Neurosci 18(18):7061–7074. https://doi.org/10.1523/jneurosci.18-18-07061.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ledesma MD, Bonay P, Colaço C, Avila J (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 269(34):21614–21619

    Article  CAS  PubMed  Google Scholar 

  105. Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Titani K, Ihara Y (1993) Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron 10(6):1151–1160. https://doi.org/10.1016/0896-6273(93)90063-w

    Article  CAS  PubMed  Google Scholar 

  106. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840. https://doi.org/10.1126/science.1175371

    Article  CAS  PubMed  Google Scholar 

  107. Bai N, Li N, Cheng R, Guan Y, Zhao X, Song Z, Xu H, Yi F, Jiang B, Li X, Wu X, Jiang C, Zhou T, Guo Q, Guo W, Feng Y, Wang Z, Ma M, Yu Y et al (2022) Inhibition of SIRT2 promotes APP acetylation and ameliorates cognitive impairment in APP/PS1 transgenic mice. Cell Rep 40(2):111062. https://doi.org/10.1016/j.celrep.2022.111062

    Article  CAS  PubMed  Google Scholar 

  108. Ko MH, Puglielli L (2009) Two endoplasmic reticulum (ER)/ER Golgi intermediate compartment-based lysine acetyltransferases post-translationally regulate BACE1 levels. J Biol Chem 284(4):2482–2492. https://doi.org/10.1074/jbc.M804901200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Costantini C, Ko MH, Jonas MC, Puglielli L (2007) A reversible form of lysine acetylation in the ER and Golgi lumen controls the molecular stabilization of BACE1. Biochem J 407(3):383–395. https://doi.org/10.1042/bj20070040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jonas MC, Pehar M, Puglielli L (2010) AT-1 is the ER membrane acetyl-CoA transporter and is essential for cell viability. J Cell Sci 123(19):3378–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tracy T, Claiborn KC, Gan L (2019) Regulation of tau homeostasis and toxicity by acetylation. Adv Exp Med Biol 1184:47–55. https://doi.org/10.1007/978-981-32-9358-8_4

    Article  CAS  PubMed  Google Scholar 

  112. Dave N, Vural AS, Piras IS, Winslow W, Surendra L, Winstone JK, Beach TG, Huentelman MJ, Velazquez R (2021) Identification of retinoblastoma binding protein 7 (Rbbp7) as a mediator against tau acetylation and subsequent neuronal loss in Alzheimer's disease and related tauopathies. Acta Neuropathol 142(2):279–294. https://doi.org/10.1007/s00401-021-02323-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Haj-Yahya M, Lashuel HA (2018) Protein Semisynthesis provides access to tau disease-associated post-translational modifications (PTMs) and paves the way to deciphering the tau PTM code in health and diseased states. J Am Chem Soc 140(21):6611–6621. https://doi.org/10.1021/jacs.8b02668

    Article  CAS  PubMed  Google Scholar 

  114. Min SW, Chen X, Tracy TE, Li Y, Zhou Y, Wang C, Shirakawa K, Minami SS, Defensor E, Mok SA, Sohn PD, Schilling B, Cong X, Ellerby L, Gibson BW, Johnson J, Krogan N, Shamloo M, Gestwicki J et al (2015) Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 21(10):1154–1162. https://doi.org/10.1038/nm.3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Morris M, Knudsen GM, Maeda S, Trinidad JC, Ioanoviciu A, Burlingame AL, Mucke L (2015) Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nat Neurosci 18(8):1183–1189. https://doi.org/10.1038/nn.4067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C, Meyers D, Cole PA, Ott M, Gan L (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67(6):953–966. https://doi.org/10.1016/j.neuron.2010.08.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gorsky MK, Burnouf S, Sofola-Adesakin O, Dols J, Augustin H, Weigelt CM, Grönke S, Partridge L (2017) Pseudo-acetylation of multiple sites on human tau proteins alters tau phosphorylation and microtubule binding, and ameliorates amyloid beta toxicity. Sci Rep 7(1):9984. https://doi.org/10.1038/s41598-017-10225-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, Lee VM (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2:252. https://doi.org/10.1038/ncomms1255

    Article  PubMed  Google Scholar 

  119. Tracy TE, Sohn PD, Minami SS, Wang C, Min SW, Li Y, Zhou Y, Le D, Lo I, Ponnusamy R, Cong X, Schilling B, Ellerby LM, Huganir RL, Gan L (2016) Acetylated tau obstructs KIBRA-mediated signaling in synaptic plasticity and promotes Tauopathy-related memory loss. Neuron 90(2):245–260. https://doi.org/10.1016/j.neuron.2016.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang L, Shi FX, Li N, Cao Y, Lei Y, Wang JZ, Tian Q, Zhou XW (2020) AMPK ameliorates tau acetylation and memory impairment through Sirt1. Mol Neurobiol 57(12):5011–5025. https://doi.org/10.1007/s12035-020-02079-x

    Article  CAS  PubMed  Google Scholar 

  121. O'Connor M, Shentu YP, Wang G, Hu WT, Xu ZD, Wang XC, Liu R, Man HY (2020) Acetylation of AMPA receptors regulates receptor trafficking and rescues memory deficits in Alzheimer's disease. iScience 23(9):101465. https://doi.org/10.1016/j.isci.2020.101465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Francis YI, Fà M, Ashraf H, Zhang H, Staniszewski A, Latchman DS, Arancio O (2009) Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer's disease. Journal of Alzheimer's disease : JAD 18(1):131–139. https://doi.org/10.3233/jad-2009-1134

    Article  CAS  PubMed  Google Scholar 

  123. Wilkinson KA, Nakamura Y, Henley JM (2010) Targets and consequences of protein SUMOylation in neurons. Brain Res Rev 64(1):195–212. https://doi.org/10.1016/j.brainresrev.2010.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dorval V, Fraser PE (2007) SUMO on the road to neurodegeneration. Biochim Biophys Acta 1773(6):694–706. https://doi.org/10.1016/j.bbamcr.2007.03.017

    Article  CAS  PubMed  Google Scholar 

  125. Liu YC, Hsu WL, Ma YL, Lee EHY (2021) Melatonin induction of APP intracellular domain 50 SUMOylation alleviates AD through enhanced transcriptional activation and Aβ degradation. Molecular therapy : the journal of the American Society of Gene Therapy 29(1):376–395. https://doi.org/10.1016/j.ymthe.2020.09.003

    Article  CAS  PubMed  Google Scholar 

  126. Maruyama T, Abe Y, Niikura T (2018) SENP1 and SENP2 regulate SUMOylation of amyloid precursor protein. Heliyon 4(4):e00601. https://doi.org/10.1016/j.heliyon.2018.e00601

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhang YQ, Sarge KD (2008) Sumoylation of amyloid precursor protein negatively regulates Abeta aggregate levels. Biochem Biophys Res Commun 374(4):673–678. https://doi.org/10.1016/j.bbrc.2008.07.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bao J, Qin M, Mahaman YAR, Zhang B, Huang F, Zeng K, Xia Y, Ke D, Wang Q, Liu R, Wang JZ, Ye K, Wang X (2018) BACE1 SUMOylation increases its stability and escalates the protease activity in Alzheimer's disease. Proc Natl Acad Sci U S A 115(15):3954–3959. https://doi.org/10.1073/pnas.1800498115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bao J, Liang Z, Gong X, Yu J, Xiao Y, Liu W, Wang X, Wang JZ, Shu X (2022) High fat diet mediates amyloid-β cleaving enzyme 1 phosphorylation and SUMOylation, enhancing cognitive impairment in APP/PS1 mice. Journal of Alzheimer's disease : JAD 85(2):863–876. https://doi.org/10.3233/jad-215299

    Article  PubMed  Google Scholar 

  130. Luo HB, Xia YY, Shu XJ, Liu ZC, Feng Y, Liu XH, Yu G, Yin G, Xiong YS, Zeng K, Jiang J, Ye K, Wang XC, Wang JZ (2014) SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination. Proc Natl Acad Sci U S A 111(46):16586–16591. https://doi.org/10.1073/pnas.1417548111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dorval V, Fraser P, E. (2006) Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and α-Synuclein. J Biol Chem

  132. Takahashi K, Ishida M, Komano H, Takahashi H (2008) SUMO-1 immunoreactivity co-localizes with phospho-tau in APP transgenic mice but not in mutant tau transgenic mice. Neurosci Lett 441(1):90–93. https://doi.org/10.1016/j.neulet.2008.06.012

    Article  CAS  PubMed  Google Scholar 

  133. Pountney DL, Huang Y, Burns RJ, Haan E, Thompson PD, Blumbergs PC, Gai WP (2003) SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease. Exp Neurol 184(1):436–446. https://doi.org/10.1016/j.expneurol.2003.07.004

    Article  CAS  PubMed  Google Scholar 

  134. Qin M, Li H, Bao J, Xia Y, Ke D, Wang Q, Liu R, Wang JZ, Zhang B, Shu X, Wang X (2019) SET SUMOylation promotes its cytoplasmic retention and induces tau pathology and cognitive impairments. Acta neuropathol Commun 7(1):21. https://doi.org/10.1186/s40478-019-0663-0

    Article  PubMed  PubMed Central  Google Scholar 

  135. Nisticò R, Ferraina C, Marconi V, Blandini F, Negri L, Egebjerg J, Feligioni M (2014) Age-related changes of protein SUMOylation balance in the AβPP Tg2576 mouse model of Alzheimer's disease. Front Pharmacol 5:63. https://doi.org/10.3389/fphar.2014.00063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hong L, Huang HC, Jiang ZF (2014) Relationship between amyloid-beta and the ubiquitin-proteasome system in Alzheimer's disease. Neurol Res 36(3):276–282. https://doi.org/10.1179/1743132813Y.0000000288

    Article  CAS  PubMed  Google Scholar 

  137. Dantuma NP, Bott LC (2014) The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front Mol Neurosci 7:70. https://doi.org/10.3389/fnmol.2014.00070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Watanabe T, Hikichi Y, Willuweit A, Shintani Y, Horiguchi T (2012) FBL2 regulates amyloid precursor protein (APP) metabolism by promoting ubiquitination-dependent APP degradation and inhibition of APP endocytosis. J Neurosci 32(10):3352–3365. https://doi.org/10.1523/jneurosci.5659-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Del Prete D, Rice RC, Rajadhyaksha AM, D'Adamio L (2016) Amyloid precursor protein (APP) may act as a substrate and a recognition unit for CRL4CRBN and Stub1 E3 ligases facilitating ubiquitination of proteins involved in presynaptic functions and neurodegeneration. J Biol Chem 291(33):17209–17227. https://doi.org/10.1074/jbc.M116.733626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Scuderi C, Steardo L, Esposito G (2014) Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5YAPP+ cells through PPARgamma involvement. Phytother Res 28(7):1007–1013. https://doi.org/10.1002/ptr.5095

    Article  CAS  PubMed  Google Scholar 

  141. Wang R, Ying Z, Zhao J, Zhang Y, Wang R, Lu H, Deng Y, Song W, Qing H (2012) Lys(203) and Lys(382) are essential for the proteasomal degradation of BACE1. Curr Alzheimer Res 9(5):606–615. https://doi.org/10.2174/156720512800618026

    Article  CAS  PubMed  Google Scholar 

  142. Yeates EF, Tesco G (2016) The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation. J Biol Chem 291(30):15753–15766. https://doi.org/10.1074/jbc.M116.718023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kang EL, Biscaro B, Piazza F, Tesco G (2012) BACE1 protein endocytosis and trafficking are differentially regulated by ubiquitination at lysine 501 and the Di-leucine motif in the carboxyl terminus. J Biol Chem 287(51):42867–42880. https://doi.org/10.1074/jbc.M112.407072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang W, Zhou Q, Jiang T, Li S, Ye J, Zheng J, Wang X, Liu Y, Deng M, Ke D, Wang Q, Wang Y, Wang JZ (2021) A novel small-molecule PROTAC selectively promotes tau clearance to improve cognitive functions in Alzheimer-like models. Theranostics 11(11):5279–5295. https://doi.org/10.7150/thno.55680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lu M, Liu T, Jiao Q, Ji J, Tao M, Liu Y, You Q, Jiang Z (2018) Discovery of a Keap1-dependent peptide PROTAC to knockdown tau by ubiquitination-proteasome degradation pathway. Eur J Med Chem 146:251–259. https://doi.org/10.1016/j.ejmech.2018.01.063

    Article  CAS  PubMed  Google Scholar 

  146. Chu TT, Gao N, Li QQ, Chen PG, Yang XF, Chen YX, Zhao YF, Li YM (2016) Specific knockdown of endogenous tau protein by peptide-directed ubiquitin-proteasome degradation. Cell Chem Biol 23(4):453–461. https://doi.org/10.1016/j.chembiol.2016.02.016

    Article  CAS  PubMed  Google Scholar 

  147. Ibarra-Bracamontes VJ, Escobar-Herrera J, Kristofikova Z, Rípova D, Florán-Garduño B, Garcia-Sierra F (2020) Early but not late conformational changes of tau in association with ubiquitination of neurofibrillary pathology in Alzheimer's disease brains. Brain Res 1744:146953. https://doi.org/10.1016/j.brainres.2020.146953

    Article  CAS  PubMed  Google Scholar 

  148. Munari F, Barracchia CG, Franchin C, Parolini F, Capaldi S, Romeo A, Bubacco L, Assfalg M, Arrigoni G, D'Onofrio M (2020) Semisynthetic and enzyme-mediated conjugate preparations illuminate the ubiquitination-dependent aggregation of tau protein. Angewandte Chemie (International ed in English) 59(16):6607–6611. https://doi.org/10.1002/anie.201916756

    Article  CAS  PubMed  Google Scholar 

  149. Puangmalai N, Sengupta U, Bhatt N, Gaikwad S, Montalbano M, Bhuyan A, Garcia S, McAllen S, Sonawane M, Jerez C, Zhao Y, Kayed R (2022) Lysine 63-linked ubiquitination of tau oligomers contributes to the pathogenesis of Alzheimer's disease. J Biol Chem 298(4):101766. https://doi.org/10.1016/j.jbc.2022.101766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cripps D, Thomas SN, Jeng Y, Yang F, Davies P, Yang AJ (2006) Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J Biol Chem 281(16):10825–10838. https://doi.org/10.1074/jbc.M512786200

    Article  CAS  PubMed  Google Scholar 

  151. Iqbal K, Grundke-Iqbal I (1991) Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer's disease. Mol Neurobiol 5(2–4):399–410. https://doi.org/10.1007/BF02935561

    Article  CAS  PubMed  Google Scholar 

  152. Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer's disease. J Neurochem 75(1):436–439. https://doi.org/10.1046/j.1471-4159.2000.0750436.x

    Article  CAS  PubMed  Google Scholar 

  153. Rowe EM, Xing V, Biggar KK (2019) Lysine methylation: implications in neurodegenerative disease. Brain Res 1707:164–171. https://doi.org/10.1016/j.brainres.2018.11.024

    Article  CAS  PubMed  Google Scholar 

  154. Qu J, Nakamura T, Holland EA, McKercher SR, Lipton SA (2012) S-nitrosylation of Cdk5: potential implications in amyloid-beta-related neurotoxicity in Alzheimer disease. Prion 6(4):364–370. https://doi.org/10.4161/pri.21250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Funk KE, Thomas SN, Schafer KN, Cooper GL, Liao Z, Clark DJ, Yang AJ, Kuret J (2014) Lysine methylation is an endogenous post-translational modification of tau protein in human brain and a modulator of aggregation propensity. Biochem J 462(1):77–88. https://doi.org/10.1042/BJ20140372

    Article  CAS  PubMed  Google Scholar 

  156. Zhou XW, Gustafsson JA, Tanila H, Bjorkdahl C, Liu R, Winblad B, Pei JJ (2008) Tau hyperphosphorylation correlates with reduced methylation of protein phosphatase 2A. Neurobiol Dis 31(3):386–394. https://doi.org/10.1016/j.nbd.2008.05.013

    Article  CAS  PubMed  Google Scholar 

  157. Li Z, Stock JB (2009) Protein carboxyl methylation and the biochemistry of memory. Biol Chem 390(11):1087–1096. https://doi.org/10.1515/BC.2009.133

    Article  CAS  PubMed  Google Scholar 

  158. Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD, Paylor RE, Lubin FD (2010) Histone methylation regulates memory formation. J Neurosci 30(10):3589–3599. https://doi.org/10.1523/JNEUROSCI.3732-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gupta-Agarwal S, Franklin AV, Deramus T, Wheelock M, Davis RL, McMahon LL, Lubin FD (2012) G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J Neurosci 32(16):5440–5453. https://doi.org/10.1523/JNEUROSCI.0147-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cappelletti G, Tedeschi G, Maggioni MG, Negri A, Nonnis S, Maci R (2004) The nitration of tau protein in neurone-like PC12 cells. FEBS Lett 562(1–3):35–39. https://doi.org/10.1016/S0014-5793(04)00173-5

    Article  CAS  PubMed  Google Scholar 

  161. Reynolds MR, Reyes JF, Fu Y, Bigio EH, Guillozet-Bongaarts AL, Berry RW, Binder LI (2006) Tau nitration occurs at tyrosine 29 in the fibrillar lesions of Alzheimer's disease and other tauopathies. J Neurosci 26(42):10636–10645. https://doi.org/10.1523/JNEUROSCI.2143-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Reynolds MR, Berry RW, Binder LI (2005) Site-specific nitration and oxidative dityrosine bridging of the tau protein by peroxynitrite: implications for Alzheimer's disease. Biochemistry 44(5):1690–1700. https://doi.org/10.1021/bi047982v

    Article  CAS  PubMed  Google Scholar 

  163. Zhang YJ, Xu YF, Chen XQ, Wang XC, Wang JZ (2005) Nitration and oligomerization of tau induced by peroxynitrite inhibit its microtubule-binding activity. FEBS Lett 579(11):2421–2427. https://doi.org/10.1016/j.febslet.2005.03.041

    Article  CAS  PubMed  Google Scholar 

  164. Nakamura T, Lipton SA (2011) Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 18(9):1478–1486. https://doi.org/10.1038/cdd.2011.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Reyes JF, Reynolds MR, Horowitz PM, Fu Y, Guillozet-Bongaarts AL, Berry R, Binder LI (2008) A possible link between astrocyte activation and tau nitration in Alzheimer's disease. Neurobiol Dis 31(2):198–208. https://doi.org/10.1016/j.nbd.2008.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hess DT, Stamler JS (2012) Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem 287(7):4411–4418. https://doi.org/10.1074/jbc.R111.285742

    Article  CAS  PubMed  Google Scholar 

  167. Qu J, Nakamura T, Cao G, Holland EA, McKercher SR, Lipton SA (2011) S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc Natl Acad Sci U S A 108(34):14330–14335. https://doi.org/10.1073/pnas.1105172108

    Article  PubMed  PubMed Central  Google Scholar 

  168. Nakamura T, Cieplak P, Cho DH, Godzik A, Lipton SA (2010) S-nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration. Mitochondrion 10(5):573–578. https://doi.org/10.1016/j.mito.2010.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nakamura T, Lipton SA (2016) Protein S-Nitrosylation as a therapeutic target for neurodegenerative diseases. Trends Pharmacol Sci 37(1):73–84. https://doi.org/10.1016/j.tips.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  170. Russell CL, Koncarevic S, Ward MA (2014) Post-translational modifications in Alzheimer's disease and the potential for new biomarkers. Journal of Alzheimer's Disease : JAD 41(2):345–364. https://doi.org/10.3233/jad-132312

    Article  CAS  PubMed  Google Scholar 

  171. Mattsson N, Portelius E, Rolstad S, Gustavsson M, Andreasson U, Stridsberg M, Wallin A, Blennow K, Zetterberg H (2012) Longitudinal cerebrospinal fluid biomarkers over four years in mild cognitive impairment. Journal of Alzheimer's disease : JAD 30(4):767–778. https://doi.org/10.3233/jad-2012-120019

    Article  CAS  PubMed  Google Scholar 

  172. Hung SY, Fu WM (2017) Drug candidates in clinical trials for Alzheimer's disease. J Biomed Sci 24(1):47. https://doi.org/10.1186/s12929-017-0355-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (CN), grant number 81870840.

Author information

Authors and Affiliations

Authors

Contributions

P.P.G. summarized the tables and drafted the manuscript. P.W. presented the ideas and edited the manuscript.

Corresponding author

Correspondence to Pu Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, PP., Wang, P. The Involvement of Post-Translational Modifications in Regulating the Development and Progression of Alzheimer’s Disease. Mol Neurobiol 60, 3617–3632 (2023). https://doi.org/10.1007/s12035-023-03277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03277-z

Keywords

Navigation