Skip to main content

Advertisement

Log in

Interactions Among Brain-Derived Neurotrophic Factor and Neuroimmune Pathways Are Key Components of the Major Psychiatric Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The purpose of this review is to summarize the current knowledge regarding the reciprocal associations between brain-derived neurotrophic factor (BDNF) and immune-inflammatory pathways and how these links may explain the involvement of this neurotrophin in the immune pathophysiology of mood disorders and schizophrenia. Toward this end, we delineated the protein–protein interaction (PPI) network centered around BDNF and searched PubMed, Scopus, Google Scholar, and Science Direct for papers dealing with the involvement of BDNF in the major psychosis, neurodevelopment, neuronal functions, and immune-inflammatory and related pathways. The PPI network was built based on the significant interactions of BDNF with neurotrophic (NTRK2, NTF4, and NGFR), immune (cytokines, STAT3, TRAF6), and cell–cell junction (CTNNB, CDH1) DEPs (differentially expressed proteins). Enrichment analysis shows that the most significant terms associated with this PPI network are the tyrosine kinase receptor (TRKR) and Src homology region two domain-containing phosphatase-2 (SHP2) pathways, tyrosine kinase receptor signaling pathways, positive regulation of kinase and transferase activity, cytokine signaling, and negative regulation of the immune response. The participation of BDNF in the immune response and its interactions with neuroprotective and cell–cell adhesion DEPs is probably a conserved regulatory process which protects against the many detrimental effects of immune activation and hyperinflammation including neurotoxicity. Lowered BDNF levels in mood disorders and schizophrenia (a) are associated with disruptions in neurotrophic signaling and activated immune-inflammatory pathways leading to neurotoxicity and (b) may interact with the reduced expression of other DEPs (CTNNB1, CDH1, or DISC1) leading to multiple aberrations in synapse and axonal functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

BDNF:

Brain-derived neurotrophic factor

BD:

Bipolar disorder

CDH:

Cadherin gene/protein

CDC:

Cell division cycle gene/protein

ChIP analysis:

Chromatin immunoprecipitation analysis

CIRS:

Compensatory immune regulatory system

CPE:

Carboxypeptidase E

CSF:

Cerebrospinal fluid

CRK:

CRK proto-oncogene

CREB:

CAMP response element-binding protein

CTNNB:

Catenin beta protein

CTBBB1:

Catenin beta 1 gene

DBS:

Deep brain stimulation

DISC1:

Disrupted in schizophrenia 1 protein

DEPs:

Differentially expressed proteins

FEP:

First-episode psychosis

FES:

First-episode schizophrenia

GABA:

Gamma aminobutyric acid

GO:

Gene ontology

GSK:

Glycogen synthase kinase

GRB2:

Growth factor receptor-bound protein 2

HDAC:

Histone deacetylase

HMGB1:

High mobility group box 1 DNA-binding nuclear protein

HRAS:

GTPase HRas

Hp:

Haptoglobin

hESC-NSCs:

Human embryonic spinal cord NSCs

IFN:

Interferon

IL:

Interleukin

IRS:

Inflammatory response system

JAK-STAT:

Janus kinases/signal transducer and activator of transcription

JNK:

C-Jun N-terminal kinase

KEGG:

Kyoto encyclopedia of genes and genomes

LIMK1:

LIM domain kinase 1

LPS:

Lipopolysaccharide

LTD:

Long-term depression

LTP:

Long-term potentiation

MAPK:

Ras-mitogen-activated protein kinase

MDD:

Major depressive disorder

MECP2:

Methyl-CpG-binding protein 2

MFB:

Medial forebrain bundle

MMP:

Matrix metalloproteinase

NMDAR:

N-Methyl-D-aspartate receptor

NGF:

Beta-nerve growth factor

NGFR:

Tumor necrosis factor receptor superfamily member 16

NPC:

Intracellular cholesterol transporter

NSC:

Neural stem cells

NTF:

Neurotrophin

NTRK1:

High affinity nerve growth factor receptor

NTRK2:

BDNF/NT-3 growth factors receptor

PBMC:

Peripheral blood mononuclear cells

PFC:

Prefrontal cortex

PI3K:

Phosphatidylinositol-3-kinase

PIK3R:

Phosphatidylinositol-3-kinase receptor

PLC:

Phospholipase C

PPI:

Protein-protein interaction

qRT-PCR:

Real-time quantitative reverse transcription

RAGE:

Receptor for advanced glycation end products

RIP2:

Serine/threonine protein kinase 2

SHP2:

Two domain-containing phosphatase-2

STAT3:

Signal transducer and activator of transcription 3

STRING:

Significant database-annotated interactions

SORT:

Sortilin

Th:

T helper cells

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TNFR:

Tumor necrosis factor receptor

TP53:

Tumor protein p53

TRAF6:

Tumor necrosis factor 6 receptor factor

T reg:

T regulatory cells

TRK:

Tropomyosin receptor kinase

TRKR:

Tyrosine kinase receptor

TRYCAT:

Tryptophan catabolite

References

  1. Maes M, Smith R, Scharpe S (1995) The monocyte-T-lymphocyte hypothesis of major depression. Psychoneuroendocrinology 20(2):111–116. https://doi.org/10.1016/0306-4530(94)00066-j

    Article  CAS  PubMed  Google Scholar 

  2. Smith RS, Maes M (1995) The macrophage-T-lymphocyte theory of schizophrenia: additional evidence. Med Hypotheses 45(2):135–141. https://doi.org/10.1016/0306-9877(95)90062-4

    Article  CAS  PubMed  Google Scholar 

  3. Maes M, Carvalho AF (2018) The compensatory immune-regulatory reflex system (CIRS) in depression and bipolar disorder. Mol Neurobiol 55(12):8885–8903. https://doi.org/10.1007/s12035-018-1016-x

    Article  CAS  PubMed  Google Scholar 

  4. Roomruangwong C, Noto C, Kanchanatawan B, Anderson G, Kubera M, Carvalho AF, Maes M (2020) The role of aberrations in the immune-inflammatory response system (IRS) and the compensatory immune-regulatory reflex system (CIRS) in different phenotypes of schizophrenia: the IRS-CIRS theory of schizophrenia. Mol Neurobiol 57(2):778–797. https://doi.org/10.1007/s12035-019-01737-z

    Article  CAS  PubMed  Google Scholar 

  5. Maes M, Vojdani A, Sirivichayakul S, Barbosa DS, Kanchanatawan B (2021) Inflammatory and oxidative pathways are new drug targets in multiple episode schizophrenia and leaky gut, Klebsiella pneumoniae, and c1q immune complexes are additional drug targets in first episode schizophrenia. Mol Neurobiol 58(7):3319–3334. https://doi.org/10.1007/s12035-021-02343-8

    Article  CAS  PubMed  Google Scholar 

  6. Simeonova D, Stoyanov D, Leunis JC, Murdjeva M, Maes M (2021) Construction of a nitro-oxidative stress-driven, mechanistic model of mood disorders: a nomothetic network approach. Nitric Oxide 106:45–54. https://doi.org/10.1016/j.niox.2020.11.001

    Article  CAS  PubMed  Google Scholar 

  7. Maes M, Berk M, Goehler L, Song C, Anderson G, Galecki P, Leonard B (2012) Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med 10:66. https://doi.org/10.1186/1741-7015-10-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 220:223–250. https://doi.org/10.1007/978-3-642-45106-5_9

    Article  CAS  PubMed  Google Scholar 

  9. Bjorkholm C, Monteggia LM (2016) BDNF - a key transducer of antidepressant effects. Neuropharmacology 102:72–79. https://doi.org/10.1016/j.neuropharm.2015.10.034

    Article  CAS  PubMed  Google Scholar 

  10. Kowianski P, Lietzau G, Czuba E, Waskow M, Steliga A, Morys J (2018) BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol 38(3):579–593. https://doi.org/10.1007/s10571-017-0510-4

    Article  CAS  PubMed  Google Scholar 

  11. Lima Giacobbo B, Doorduin J, Klein HC, Dierckx R, Bromberg E, de Vries EFJ (2019) Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol 56(5):3295–3312. https://doi.org/10.1007/s12035-018-1283-6

    Article  CAS  PubMed  Google Scholar 

  12. Miranda M, Morici JF, Zanoni MB, Bekinschtein P (2019) Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 13:363. https://doi.org/10.3389/fncel.2019.00363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu SY, Pan BS, Tsai SF, Chiang YT, Huang BM, Mo FE, Kuo YM (2020) BDNF reverses aging-related microglial activation. J Neuroinflammation 17(1):210. https://doi.org/10.1186/s12974-020-01887-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Colucci-D’Amato L, Cimaglia G (2020) Ruta graveolens as a potential source of neuroactive compounds to promote and restore neural functions. J Tradit Complement Med 10(3):309–314. https://doi.org/10.1016/j.jtcme.2020.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lin CC, Huang TL (2020) Brain-derived neurotrophic factor and mental disorders. Biomed J 43(2):134–142. https://doi.org/10.1016/j.bj.2020.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T (2007) Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 90(3):397–406. https://doi.org/10.1016/j.ygeno.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  17. Colucci-D'Amato L, Speranza L, Volpicelli F (2020) Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci 21 (20). doi:https://doi.org/10.3390/ijms21207777

  18. Friedman WJ (2010) Proneurotrophins, seizures, and neuronal apoptosis. Neuroscientist 16(3):244–252. https://doi.org/10.1177/1073858409349903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10(12):850–860. https://doi.org/10.1038/nrn2738

    Article  CAS  PubMed  Google Scholar 

  20. Yang J, Harte-Hargrove LC, Siao CJ, Marinic T, Clarke R, Ma Q, Jing D, Lafrancois JJ et al (2014) proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep 7(3):796–806. https://doi.org/10.1016/j.celrep.2014.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Volosin M, Song W, Almeida RD, Kaplan DR, Hempstead BL, Friedman WJ (2006) Interaction of survival and death signaling in basal forebrain neurons: roles of neurotrophins and proneurotrophins. J Neurosci 26(29):7756–7766. https://doi.org/10.1523/JNEUROSCI.1560-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haapasalo A, Sipola I, Larsson K, Akerman KE, Stoilov P, Stamm S, Wong G, Castren E (2002) Regulation of TRKB surface expression by brain-derived neurotrophic factor and truncated TRKB isoforms. J Biol Chem 277(45):43160–43167. https://doi.org/10.1074/jbc.M205202200

    Article  CAS  PubMed  Google Scholar 

  23. Chen ZY, Patel PD, Sant G, Meng CX, Teng KK, Hempstead BL, Lee FS (2004) Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. J Neurosci 24(18):4401–4411. https://doi.org/10.1523/JNEUROSCI.0348-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lohia R, Salari R, Brannigan G (2019) Sequence specificity despite intrinsic disorder: how a disease-associated Val/Met polymorphism rearranges tertiary interactions in a long disordered protein. PLoS Comput Biol 15(10):e1007390. https://doi.org/10.1371/journal.pcbi.1007390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hempstead BL (2015) Brain-derived neurotrophic factor: three ligands, many actions. Trans Am Clin Climatol Assoc 126:9–19

    PubMed  PubMed Central  Google Scholar 

  26. Takei N, Inamura N, Kawamura M, Namba H, Hara K, Yonezawa K, Nawa H (2004) Brain-derived neurotrophic factor induces mammalian target of rapamycin-dependent local activation of translation machinery and protein synthesis in neuronal dendrites. J Neurosci 24(44):9760–9769. https://doi.org/10.1523/JNEUROSCI.1427-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marini AM, Jiang X, Wu X, Tian F, Zhu D, Okagaki P, Lipsky RH (2004) Role of brain-derived neurotrophic factor and NF-kappaB in neuronal plasticity and survival: from genes to phenotype. Restor Neurol Neurosci 22(2):121–130

    CAS  PubMed  Google Scholar 

  28. Messaoudi E, Ying SW, Kanhema T, Croll SD, Bramham CR (2002) Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J Neurosci 22(17):7453–7461

    Article  CAS  Google Scholar 

  29. Bernd P (2008) The role of neurotrophins during early development. Gene Expr 14(4):241–250. https://doi.org/10.3727/105221608786883799

    Article  PubMed  Google Scholar 

  30. Mou K, Hunsberger CL, Cleary JM, Davis RL (1997) Synergistic effects of BDNF and NT-3 on postnatal spiral ganglion neurons. J Comp Neurol 386(4):529–539

    Article  CAS  Google Scholar 

  31. Paris AJ, Hayer KE, Oved JH, Avgousti DC, Toulmin SA, Zepp JA, Zacharias WJ, Katzen JB et al (2020) STAT3-BDNF-TrkB signalling promotes alveolar epithelial regeneration after lung injury. Nat Cell Biol 22(10):1197–1210. https://doi.org/10.1038/s41556-020-0569-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jansen P, Giehl K, Nyengaard JR, Teng K, Lioubinski O, Sjoegaard SS, Breiderhoff T, Gotthardt M et al (2007) Roles for the pro-neurotrophin receptor sortilin in neuronal development, aging and brain injury. Nat Neurosci 10(11):1449–1457. https://doi.org/10.1038/nn2000

    Article  CAS  PubMed  Google Scholar 

  33. Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T (2007) Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res 85(3):525–535. https://doi.org/10.1002/jnr.21139

    Article  CAS  PubMed  Google Scholar 

  34. Antonakopoulos N, Iliodromiti Z, Mastorakos G, Iavazzo C, Valsamakis G, Salakos N, Papageorghiou A, Margeli A et al (2018) Association between brain-derived neurotrophic factor (BDNF) levels in 2(nd) trimester amniotic fluid and fetal development. Mediators Inflamm 2018:8476217. https://doi.org/10.1155/2018/8476217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawamura K, Kawamura N, Sato W, Fukuda J, Kumagai J, Tanaka T (2009) Brain-derived neurotrophic factor promotes implantation and subsequent placental development by stimulating trophoblast cell growth and survival. Endocrinology 150(8):3774–3782. https://doi.org/10.1210/en.2009-0213

    Article  CAS  PubMed  Google Scholar 

  36. Kawamura K, Kawamura N, Fukuda J, Kumagai J, Hsueh AJ, Tanaka T (2007) Regulation of preimplantation embryo development by brain-derived neurotrophic factor. Dev Biol 311(1):147–158. https://doi.org/10.1016/j.ydbio.2007.08.026

    Article  CAS  PubMed  Google Scholar 

  37. Klein R, Parada LF, Coulier F, Barbacid M (1989) trkB, a novel tyrosine protein kinase receptor expressed during mouse neural development. EMBO J 8(12):3701–3709

    Article  CAS  Google Scholar 

  38. Barbacid M (1994) The Trk family of neurotrophin receptors. J Neurobiol 25(11):1386–1403. https://doi.org/10.1002/neu.480251107

    Article  CAS  PubMed  Google Scholar 

  39. Deinhardt K, Chao MV (2014) Shaping neurons: long and short range effects of mature and proBDNF signalling upon neuronal structure. Neuropharmacology 76 Pt C:603–609. doi:https://doi.org/10.1016/j.neuropharm.2013.04.054

  40. Anastasia A, Deinhardt K, Chao MV, Will NE, Irmady K, Lee FS, Hempstead BL, Bracken C (2013) Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat Commun 4:2490. https://doi.org/10.1038/ncomms3490

    Article  CAS  PubMed  Google Scholar 

  41. Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R et al (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25(22):5455–5463. https://doi.org/10.1523/JNEUROSCI.5123-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361(1473):1545–1564. https://doi.org/10.1098/rstb.2006.1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gonzalez A, Moya-Alvarado G, Gonzalez-Billaut C, Bronfman FC (2016) Cellular and molecular mechanisms regulating neuronal growth by brain-derived neurotrophic factor. Cytoskeleton (Hoboken) 73(10):612–628. https://doi.org/10.1002/cm.21312

    Article  CAS  Google Scholar 

  44. Sasi M, Vignoli B, Canossa M, Blum R (2017) Neurobiology of local and intercellular BDNF signaling. Pflugers Arch 469(5–6):593–610. https://doi.org/10.1007/s00424-017-1964-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Foltran RB, Diaz SL (2016) BDNF isoforms: a round trip ticket between neurogenesis and serotonin? J Neurochem 138(2):204–221. https://doi.org/10.1111/jnc.13658

    Article  CAS  PubMed  Google Scholar 

  46. Zheng LR, Zhu XQ, Huang XM, Gu Q, Xie DH (2013) Morphological study on early development of brain derived neurophic factor-positive neurons in the frontal lobe of human fetus. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 35(3):260–264. https://doi.org/10.3881/j.issn.1000-503X.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  47. Yao L, Zhang D, Bernd P (1994) The onset of neurotrophin and trk mRNA expression in early embryonic tissues of the quail. Dev Biol 165(2):727–730. https://doi.org/10.1006/dbio.1994.1288

    Article  CAS  PubMed  Google Scholar 

  48. Jungbluth S, Koentges G, Lumsden A (1997) Coordination of early neural tube development by BDNF/trkB. Development 124(10):1877–1885

    Article  CAS  Google Scholar 

  49. Zhang D, Yao L, Bernd P (1996) Expression of neurotrophin trk and p75 receptors in quail embryos undergoing gastrulation and neurulation. Dev Dyn 205(2):150–161. https://doi.org/10.1002/(SICI)1097-0177(199602)205:2%3c150::AID-AJA6%3e3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  50. Li H, Lin LY, Zhang Y, Lim Y, Rahman M, Beck A, Al-Hawwas M, Feng S et al (2020) Pro-BDNF knockout causes abnormal motor behaviours and early death in mice. Neuroscience 438:145–157. https://doi.org/10.1016/j.neuroscience.2020.05.007

    Article  CAS  PubMed  Google Scholar 

  51. Conover JC, Erickson JT, Katz DM, Bianchi LM, Poueymirou WT, McClain J, Pan L, Helgren M et al (1995) Neuronal deficits, not involving motor neurons, in mice lacking BDNF and/or NT4. Nature 375(6528):235–238. https://doi.org/10.1038/375235a0

    Article  CAS  PubMed  Google Scholar 

  52. Johnson EM, Craig ET, Yeh HH (2007) TrkB is necessary for pruning at the climbing fibre-Purkinje cell synapse in the developing murine cerebellum. J Physiol 582(Pt 2):629–646. https://doi.org/10.1113/jphysiol.2007.133561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maisonpierre PC, Belluscio L, Friedman B, Alderson RF, Wiegand SJ, Furth ME, Lindsay RM, Yancopoulos GD (1990) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5(4):501–509. https://doi.org/10.1016/0896-6273(90)90089-x

    Article  CAS  PubMed  Google Scholar 

  54. Almeida LE, Roby CD, Krueger BK (2014) Increased BDNF expression in fetal brain in the valproic acid model of autism. Mol Cell Neurosci 59:57–62. https://doi.org/10.1016/j.mcn.2014.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Murray PS, Holmes PV (2011) An overview of brain-derived neurotrophic factor and implications for excitotoxic vulnerability in the hippocampus. Int J Pept 2011:654085. https://doi.org/10.1155/2011/654085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Deuschle M, Hendlmeier F, Witt S, Rietschel M, Gilles M, Sanchez-Guijo A, Fananas L, Hentze S et al (2018) Cortisol, cortisone, and BDNF in amniotic fluid in the second trimester of pregnancy: effect of early life and current maternal stress and socioeconomic status. Dev Psychopathol 30(3):971–980. https://doi.org/10.1017/S0954579418000147

    Article  PubMed  Google Scholar 

  57. Kodomari I, Wada E, Nakamura S, Wada K (2009) Maternal supply of BDNF to mouse fetal brain through the placenta. Neurochem Int 54(2):95–98. https://doi.org/10.1016/j.neuint.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  58. DM Halepoto S Bashir L ALA 2014 Possible role of brain-derived neurotrophic factor (BDNF) in autism spectrum disorder: current status J Coll Physicians Surg Pak 24 4 274 278 04.2014/JCPSP.274278

  59. Kimiwada T, Sakurai M, Ohashi H, Aoki S, Tominaga T, Wada K (2009) Clock genes regulate neurogenic transcription factors, including NeuroD1, and the neuronal differentiation of adult neural stem/progenitor cells. Neurochem Int 54(5–6):277–285. https://doi.org/10.1016/j.neuint.2008.12.005

    Article  CAS  PubMed  Google Scholar 

  60. Ohmiya M, Shudai T, Nitta A, Nomoto H, Furukawa Y, Furukawa S (2002) Brain-derived neurotrophic factor alters cell migration of particular progenitors in the developing mouse cerebral cortex. Neurosci Lett 317(1):21–24. https://doi.org/10.1016/s0304-3940(01)02412-0

    Article  CAS  PubMed  Google Scholar 

  61. Buchman VL, Davies AM (1993) Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development 118(3):989–1001

    Article  CAS  Google Scholar 

  62. Fukumitsu H, Ohtsuka M, Murai R, Nakamura H, Itoh K, Furukawa S (2006) Brain-derived neurotrophic factor participates in determination of neuronal laminar fate in the developing mouse cerebral cortex. J Neurosci 26(51):13218–13230. https://doi.org/10.1523/JNEUROSCI.4251-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bartkowska K, Paquin A, Gauthier AS, Kaplan DR, Miller FD (2007) Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development 134(24):4369–4380. https://doi.org/10.1242/dev.008227

    Article  CAS  PubMed  Google Scholar 

  64. Kertes DA, Bhatt SS, Kamin HS, Hughes DA, Rodney NC, Mulligan CJ (2017) BNDF methylation in mothers and newborns is associated with maternal exposure to war trauma. Clin Epigenetics 9:68. https://doi.org/10.1186/s13148-017-0367-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE, Champagne FA (2015) Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics 10(5):408–417. https://doi.org/10.1080/15592294.2015.1039221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gilmore JH, Jarskog LF, Vadlamudi S (2003) Maternal infection regulates BDNF and NGF expression in fetal and neonatal brain and maternal-fetal unit of the rat. J Neuroimmunol 138(1–2):49–55. https://doi.org/10.1016/s0165-5728(03)00095-x

    Article  CAS  PubMed  Google Scholar 

  67. Wang JM, Pei LX, Zhang YY, Cheng YX, Niu CL, Cui Y, Feng WS, Wang GF (2018) Ethanol extract of Rehmannia glutinosa exerts antidepressant-like effects on a rat chronic unpredictable mild stress model by involving monoamines and BDNF. Metab Brain Dis 33(3):885–892. https://doi.org/10.1007/s11011-018-0202-x

    Article  CAS  PubMed  Google Scholar 

  68. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15(3 Pt 1):1768–1777

    Article  CAS  Google Scholar 

  69. Buchmann AF, Hellweg R, Rietschel M, Treutlein J, Witt SH, Zimmermann US, Schmidt MH, Esser G et al (2013) BDNF Val 66 Met and 5-HTTLPR genotype moderate the impact of early psychosocial adversity on plasma brain-derived neurotrophic factor and depressive symptoms: a prospective study. Eur Neuropsychopharmacol 23(8):902–909. https://doi.org/10.1016/j.euroneuro.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  70. Kundakovic M, Gudsnuk K, Herbstman JB, Tang D, Perera FP, Champagne FA (2015) DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci U S A 112(22):6807–6813. https://doi.org/10.1073/pnas.1408355111

    Article  CAS  PubMed  Google Scholar 

  71. Branchi I (2009) The mouse communal nest: investigating the epigenetic influences of the early social environment on brain and behavior development. Neurosci Biobehav Rev 33(4):551–559. https://doi.org/10.1016/j.neubiorev.2008.03.011

    Article  PubMed  Google Scholar 

  72. Lippmann M, Bress A, Nemeroff CB, Plotsky PM, Monteggia LM (2007) Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur J Neurosci 25(10):3091–3098. https://doi.org/10.1111/j.1460-9568.2007.05522.x

    Article  PubMed  Google Scholar 

  73. Mateos-Aparicio P, Rodriguez-Moreno A (2019) The impact of studying brain plasticity. Front Cell Neurosci 13:66. https://doi.org/10.3389/fncel.2019.00066

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10(3):355–362. https://doi.org/10.1038/nn1847

    Article  CAS  PubMed  Google Scholar 

  75. Castren E, Pitkanen M, Sirvio J, Parsadanian A, Lindholm D, Thoenen H, Riekkinen PJ (1993) The induction of LTP increases BDNF and NGF mRNA but decreases NT-3 mRNA in the dentate gyrus. NeuroReport 4(7):895–898. https://doi.org/10.1097/00001756-199307000-00014

    Article  CAS  PubMed  Google Scholar 

  76. Patterson SL, Grover LM, Schwartzkroin PA, Bothwell M (1992) Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9(6):1081–1088. https://doi.org/10.1016/0896-6273(92)90067-n

    Article  CAS  PubMed  Google Scholar 

  77. Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B (1996) Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381(6584):706–709. https://doi.org/10.1038/381706a0

    Article  CAS  PubMed  Google Scholar 

  78. Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 92(19):8856–8860. https://doi.org/10.1073/pnas.92.19.8856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16(6):1137–1145. https://doi.org/10.1016/s0896-6273(00)80140-3

    Article  CAS  PubMed  Google Scholar 

  80. Baj G, Pinhero V, Vaghi V, Tongiorgi E (2016) Signaling pathways controlling activity-dependent local translation of BDNF and their localization in dendritic arbors. J Cell Sci 129(14):2852–2864. https://doi.org/10.1242/jcs.177626

    Article  CAS  PubMed  Google Scholar 

  81. Barbacid M (1993) Nerve growth factor: a tale of two receptors. Oncogene 8(8):2033–2042

    CAS  PubMed  Google Scholar 

  82. Dinsmore CJ, Soriano P (2018) MAPK and PI3K signaling: at the crossroads of neural crest development. Dev Biol 444(Suppl 1):S79–S97. https://doi.org/10.1016/j.ydbio.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chapleau CA, Pozzo-Miller L (2012) Divergent roles of p75NTR and Trk receptors in BDNF’s effects on dendritic spine density and morphology. Neural Plast 2012:578057. https://doi.org/10.1155/2012/578057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 23(19):7311–7316

    Article  CAS  Google Scholar 

  85. Peng CH, Chiou SH, Chen SJ, Chou YC, Ku HH, Cheng CK, Yen CJ, Tsai TH et al (2008) Neuroprotection by Imipramine against lipopolysaccharide-induced apoptosis in hippocampus-derived neural stem cells mediated by activation of BDNF and the MAPK pathway. Eur Neuropsychopharmacol 18(2):128–140. https://doi.org/10.1016/j.euroneuro.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  86. Kuzniewska B, Rejmak E, Malik AR, Jaworski J, Kaczmarek L, Kalita K (2013) Brain-derived neurotrophic factor induces matrix metalloproteinase 9 expression in neurons via the serum response factor/c-Fos pathway. Mol Cell Biol 33(11):2149–2162. https://doi.org/10.1128/MCB.00008-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bramham CR, Wells DG (2007) Dendritic mRNA: transport, translation and function. Nat Rev Neurosci 8(10):776–789. https://doi.org/10.1038/nrn2150

    Article  CAS  PubMed  Google Scholar 

  88. Van Horck FP, Holt CE (2008) A cytoskeletal platform for local translation in axons. Sci Signal 1(8):pe11. https://doi.org/10.1126/stke.18pe11

    Article  PubMed  PubMed Central  Google Scholar 

  89. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283–289. https://doi.org/10.1038/nature04367

    Article  CAS  PubMed  Google Scholar 

  90. Troca-Marin JA, Alves-Sampaio A, Tejedor FJ, Montesinos ML (2010) Local translation of dendritic RhoA revealed by an improved synaptoneurosome preparation. Mol Cell Neurosci 43(3):308–314. https://doi.org/10.1016/j.mcn.2009.12.004

    Article  CAS  PubMed  Google Scholar 

  91. Messaoudi E, Kanhema T, Soule J, Tiron A, Dagyte G, da Silva B, Bramham CR (2007) Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J Neurosci 27(39):10445–10455. https://doi.org/10.1523/JNEUROSCI.2883-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gooney M, Messaoudi E, Maher FO, Bramham CR, Lynch MA (2004) BDNF-induced LTP in dentate gyrus is impaired with age: analysis of changes in cell signaling events. Neurobiol Aging 25(10):1323–1331. https://doi.org/10.1016/j.neurobiolaging.2004.01.003

    Article  CAS  PubMed  Google Scholar 

  93. Panja D, Bramham CR (2014) BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology 76 Pt C:664–676. doi:https://doi.org/10.1016/j.neuropharm.2013.06.024

  94. Lessmann V, Heumann R (1998) Modulation of unitary glutamatergic synapses by neurotrophin-4/5 or brain-derived neurotrophic factor in hippocampal microcultures: presynaptic enhancement depends on pre-established paired-pulse facilitation. Neuroscience 86(2):399–413. https://doi.org/10.1016/s0306-4522(98)00035-9

    Article  CAS  PubMed  Google Scholar 

  95. Stoop R, Poo MM (1996) Synaptic modulation by neurotrophic factors: differential and synergistic effects of brain-derived neurotrophic factor and ciliary neurotrophic factor. J Neurosci 16(10):3256–3264

    Article  CAS  Google Scholar 

  96. Vicario-Abejon C, Collin C, McKay RD, Segal M (1998) Neurotrophins induce formation of functional excitatory and inhibitory synapses between cultured hippocampal neurons. J Neurosci 18(18):7256–7271

    Article  CAS  Google Scholar 

  97. Takei N, Numakawa T, Kozaki S, Sakai N, Endo Y, Takahashi M, Hatanaka H (1998) Brain-derived neurotrophic factor induces rapid and transient release of glutamate through the non-exocytotic pathway from cortical neurons. J Biol Chem 273(42):27620–27624. https://doi.org/10.1074/jbc.273.42.27620

    Article  CAS  PubMed  Google Scholar 

  98. Levine ES, Crozier RA, Black IB, Plummer MR (1998) Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc Natl Acad Sci U S A 95(17):10235–10239. https://doi.org/10.1073/pnas.95.17.10235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lau CG, Takeuchi K, Rodenas-Ruano A, Takayasu Y, Murphy J, Bennett MV, Zukin RS (2009) Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity. Biochem Soc Trans 37(Pt 6):1369–1374. https://doi.org/10.1042/BST0371369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yamada MK, Nakanishi K, Ohba S, Nakamura T, Ikegaya Y, Nishiyama N, Matsuki N (2002) Brain-derived neurotrophic factor promotes the maturation of GABAergic mechanisms in cultured hippocampal neurons. J Neurosci 22(17):7580–7585

    Article  CAS  Google Scholar 

  101. Rutherford LC, DeWan A, Lauer HM, Turrigiano GG (1997) Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci 17(12):4527–4535

    Article  CAS  Google Scholar 

  102. Sairanen M, Lucas G, Ernfors P, Castren M, Castren E (2005) Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25(5):1089–1094. https://doi.org/10.1523/JNEUROSCI.3741-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S (2005) Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol 192(2):348–356. https://doi.org/10.1016/j.expneurol.2004.11.016

    Article  CAS  PubMed  Google Scholar 

  104. Yang T, Nie Z, Shu H, Kuang Y, Chen X, Cheng J, Yu S, Liu H (2020) The role of BDNF on neural plasticity in depression. Front Cell Neurosci 14:82. https://doi.org/10.3389/fncel.2020.00082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kuipers SD, Trentani A, Tiron A, Mao X, Kuhl D, Bramham CR (2016) BDNF-induced LTP is associated with rapid Arc/Arg3.1-dependent enhancement in adult hippocampal neurogenesis. Sci Rep 6:21222. doi:https://doi.org/10.1038/srep21222

  106. Leal G, Bramham CR, Duarte CB (2017) BDNF and hippocampal synaptic plasticity. Vitam Horm 104:153–195. https://doi.org/10.1016/bs.vh.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  107. Bamji SX, Rico B, Kimes N, Reichardt LF (2006) BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin-beta-catenin interactions. J Cell Biol 174(2):289–299. https://doi.org/10.1083/jcb.200601087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Valenta T, Hausmann G, Basler K (2012) The many faces and functions of beta-catenin. EMBO J 31(12):2714–2736. https://doi.org/10.1038/emboj.2012.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Seong E, Yuan L, Arikkath J (2015) Cadherins and catenins in dendrite and synapse morphogenesis. Cell Adh Migr 9(3):202–213. https://doi.org/10.4161/19336918.2014.994919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Arikkath J, Reichardt LF (2008) Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. Trends Neurosci 31(9):487–494. https://doi.org/10.1016/j.tins.2008.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang L, Yang X, Yang S, Zhang J (2011) The Wnt /beta-catenin signaling pathway in the adult neurogenesis. Eur J Neurosci 33(1):1–8. https://doi.org/10.1111/j.1460-9568.2010.7483.x

    Article  PubMed  Google Scholar 

  112. Wuhanqimuge AM (2013) Lysophosphatidylcholine potentiates BDNF-induced TrkB phosphorylation and downstream signals in cerebellar granule neurons. Biosci Biotechnol Biochem 77(12):2510–2513. https://doi.org/10.1271/bbb.130622

    Article  CAS  PubMed  Google Scholar 

  113. Shimizu T, Kagawa T, Inoue T, Nonaka A, Takada S, Aburatani H, Taga T (2008) Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells. Mol Cell Biol 28(24):7427–7441. https://doi.org/10.1128/MCB.01962-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Maguschak KA, Ressler KJ (2008) Beta-catenin is required for memory consolidation. Nat Neurosci 11(11):1319–1326. https://doi.org/10.1038/nn.2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Umschweif G, Alexandrovich AG, Trembovler V, Horowitz M, Shohami E (2013) The role and dynamics of beta-catenin in precondition induced neuroprotection after traumatic brain injury. PLoS ONE 8(10):e76129. https://doi.org/10.1371/journal.pone.0076129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen BY, Wang X, Wang ZY, Wang YZ, Chen LW, Luo ZJ (2013) Brain-derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/beta-catenin signaling pathway. J Neurosci Res 91(1):30–41. https://doi.org/10.1002/jnr.23138

    Article  CAS  PubMed  Google Scholar 

  117. Liyanli WM, Yang J, Jin R, Ren Z, Gao W, Li X, Wang T, Luo T et al (2016) The relationship between BDNF and the Wnt signaling pathway in the growth of human neural stem. Neurology 86(16 Supplement):5148

    Google Scholar 

  118. Yang JW, Ru J, Ma W, Gao Y, Liang Z, Liu J, Guo JH, Li LY (2015) BDNF promotes the growth of human neurons through crosstalk with the Wnt/beta-catenin signaling pathway via GSK-3beta. Neuropeptides 54:35–46. https://doi.org/10.1016/j.npep.2015.08.005

    Article  CAS  PubMed  Google Scholar 

  119. Zhang F, Liu CL, Tong MM, Zhao Z, Chen SQ (2019) Both Wnt/beta-catenin and ERK5 signaling pathways are involved in BDNF-induced differentiation of pluripotent stem cells into neural stem cells. Neurosci Lett 708:134345. https://doi.org/10.1016/j.neulet.2019.134345

    Article  CAS  PubMed  Google Scholar 

  120. Zhang W, Shi Y, Peng Y, Zhong L, Zhu S, Zhang W, Tang SJ (2018) Neuron activity-induced Wnt signaling up-regulates expression of brain-derived neurotrophic factor in the pain neural circuit. J Biol Chem 293(40):15641–15651. https://doi.org/10.1074/jbc.RA118.002840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gomes C, Smith SC, Youssef MN, Zheng JJ, Hagg T, Hetman M (2011) RNA polymerase 1-driven transcription as a mediator of BDNF-induced neurite outgrowth. J Biol Chem 286(6):4357–4363. https://doi.org/10.1074/jbc.M110.170134

    Article  CAS  PubMed  Google Scholar 

  122. Li XT, Liang Z, Wang TT, Yang JW, Ma W, Deng SK, Wang XB, Dai YF et al (2017) Brain-derived neurotrophic factor promotes growth of neurons and neural stem cells possibly by triggering the phosphoinositide 3-kinase/ AKT/glycogen synthase kinase-3beta/beta-catenin pathway. CNS Neurol Disord Drug Targets 16(7):828–836. https://doi.org/10.2174/1871527316666170518170422

    Article  CAS  PubMed  Google Scholar 

  123. Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S (2010) Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 70(5):271–288. https://doi.org/10.1002/dneu.20774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lin G, Bella AJ, Lue TF, Lin CS (2006) Brain-derived neurotrophic factor (BDNF) acts primarily via the JAK/STAT pathway to promote neurite growth in the major pelvic ganglion of the rat: part 2. J Sex Med 3(5):821–829. https://doi.org/10.1111/j.1743-6109.2006.00292.x

    Article  CAS  PubMed  Google Scholar 

  125. Lin G, Zhang H, Sun F, Lu Z, Reed-Maldonado A, Lee YC, Wang G, Banie L et al (2016) Brain-derived neurotrophic factor promotes nerve regeneration by activating the JAK/STAT pathway in Schwann cells. Transl Androl Urol 5(2):167–175. https://doi.org/10.21037/tau.2016.02.03

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hixson KM, Cogswell M, Brooks-Kayal AR, Russek SJ (2019) Evidence for a non-canonical JAK/STAT signaling pathway in the synthesis of the brain’s major ion channels and neurotransmitter receptors. BMC Genomics 20(1):677. https://doi.org/10.1186/s12864-019-6033-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yoshimatsu T, Kawaguchi D, Oishi K, Takeda K, Akira S, Masuyama N, Gotoh Y (2006) Non-cell-autonomous action of STAT3 in maintenance of neural precursor cells in the mouse neocortex. Development 133(13):2553–2563. https://doi.org/10.1242/dev.02419

    Article  CAS  PubMed  Google Scholar 

  128. Oatley JM, Kaucher AV, Avarbock MR, Brinster RL (2010) Regulation of mouse spermatogonial stem cell differentiation by STAT3 signaling. Biol Reprod 83(3):427–433. https://doi.org/10.1095/biolreprod.109.083352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yadav A, Kalita A, Dhillon S, Banerjee K (2005) JAK/STAT3 pathway is involved in survival of neurons in response to insulin-like growth factor and negatively regulated by suppressor of cytokine signaling-3. J Biol Chem 280(36):31830–31840. https://doi.org/10.1074/jbc.M501316200

    Article  CAS  PubMed  Google Scholar 

  130. Selvaraj BT, Frank N, Bender FL, Asan E, Sendtner M (2012) Local axonal function of STAT3 rescues axon degeneration in the pmn model of motoneuron disease. J Cell Biol 199(3):437–451. https://doi.org/10.1083/jcb.201203109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Quarta S, Baeumer BE, Scherbakov N, Andratsch M, Rose-John S, Dechant G, Bandtlow CE, Kress M (2014) Peripheral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130. J Neurosci 34(39):13222–13233. https://doi.org/10.1523/JNEUROSCI.1209-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bouret SG, Bates SH, Chen S, Myers MG Jr, Simerly RB (2012) Distinct roles for specific leptin receptor signals in the development of hypothalamic feeding circuits. J Neurosci 32(4):1244–1252. https://doi.org/10.1523/JNEUROSCI.2277-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tang QP, Shen Q, Wu LX, Feng XL, Liu H, Wu B, Huang XS, Wang GQ et al (2016) STAT3 signal that mediates the neural plasticity is involved in willed-movement training in focal ischemic rats. J Zhejiang Univ Sci B 17(7):493–502. https://doi.org/10.1631/jzus.B1500297

    Article  PubMed  PubMed Central  Google Scholar 

  134. Radin DP, Patel P (2017) BDNF: an oncogene or tumor suppressor? Anticancer Res 37(8):3983–3990. https://doi.org/10.21873/anticanres.11783

    Article  CAS  PubMed  Google Scholar 

  135. Batista CM, Mariano ED, Barbosa BJ, Morgalla M, Marie SK, Teixeira MJ, Lepski G (2014) Adult neurogenesis and glial oncogenesis: when the process fails. Biomed Res Int 2014:438639. https://doi.org/10.1155/2014/438639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li Z, Zhang Y, Tong Y, Tong J, Thiele CJ (2015) Trk inhibitor attenuates the BDNF/TrkB-induced protection of neuroblastoma cells from etoposide in vitro and in vivo. Cancer Biol Ther 16(3):477–483. https://doi.org/10.1080/15384047.2015.1016659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lv X, Gu C, Guo S (2020) Activation of BDNF-AS/ADAR/p53 positive feedback loop inhibits glioblastoma cell proliferation. Neurochem Res 45(2):508–518. https://doi.org/10.1007/s11064-019-02943-w

    Article  CAS  PubMed  Google Scholar 

  138. Lai PC, Chiu TH, Huang YT (2010) Overexpression of BDNF and TrkB in human bladder cancer specimens. Oncol Rep 24(5):1265–1270. https://doi.org/10.3892/or_00000981

    Article  PubMed  Google Scholar 

  139. Vanhecke E, Adriaenssens E, Verbeke S, Meignan S, Germain E, Berteaux N, Nurcombe V, Le Bourhis X et al (2011) Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clin Cancer Res 17(7):1741–1752. https://doi.org/10.1158/1078-0432.CCR-10-1890

    Article  CAS  PubMed  Google Scholar 

  140. Yin B, Ma ZY, Zhou ZW, Gao WC, Du ZG, Zhao ZH, Li QQ (2015) The TrkB+ cancer stem cells contribute to post-chemotherapy recurrence of triple-negative breast cancers in an orthotopic mouse model. Oncogene 34(6):761–770. https://doi.org/10.1038/onc.2014.8

    Article  CAS  PubMed  Google Scholar 

  141. Au CW, Siu MK, Liao X, Wong ES, Ngan HY, Tam KF, Chan DC, Chan QK et al (2009) Tyrosine kinase B receptor and BDNF expression in ovarian cancers - effect on cell migration, angiogenesis and clinical outcome. Cancer Lett 281(2):151–161. https://doi.org/10.1016/j.canlet.2009.02.025

    Article  CAS  PubMed  Google Scholar 

  142. Lam CT, Yang ZF, Lau CK, Tam KH, Fan ST, Poon RT (2011) Brain-derived neurotrophic factor promotes tumorigenesis via induction of neovascularization: implication in hepatocellular carcinoma. Clin Cancer Res 17(10):3123–3133. https://doi.org/10.1158/1078-0432.CCR-10-2802

    Article  CAS  PubMed  Google Scholar 

  143. Guo D, Hou X, Zhang H, Sun W, Zhu L, Liang J, Jiang X (2011) More expressions of BDNF and TrkB in multiple hepatocellular carcinoma and anti-BDNF or K252a induced apoptosis, supressed invasion of HepG2 and HCCLM3 cells. J Exp Clin Cancer Res 30:97. https://doi.org/10.1186/1756-9966-30-97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Okugawa Y, Tanaka K, Inoue Y, Kawamura M, Kawamoto A, Hiro J, Saigusa S, Toiyama Y et al (2013) Brain-derived neurotrophic factor/tropomyosin-related kinase B pathway in gastric cancer. Br J Cancer 108(1):121–130. https://doi.org/10.1038/bjc.2012.499

    Article  CAS  PubMed  Google Scholar 

  145. Fujikawa H, Tanaka K, Toiyama Y, Saigusa S, Inoue Y, Uchida K, Kusunoki M (2012) High TrkB expression levels are associated with poor prognosis and EMT induction in colorectal cancer cells. J Gastroenterol 47(7):775–784. https://doi.org/10.1007/s00535-012-0532-0

    Article  CAS  PubMed  Google Scholar 

  146. Tanaka K, Okugawa Y, Toiyama Y, Inoue Y, Saigusa S, Kawamura M, Araki T, Uchida K et al (2014) Brain-derived neurotrophic factor (BDNF)-induced tropomyosin-related kinase B (Trk B) signaling is a potential therapeutic target for peritoneal carcinomatosis arising from colorectal cancer. PLoS ONE 9(5):e96410. https://doi.org/10.1371/journal.pone.0096410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Li Z, Oh DY, Nakamura K, Thiele CJ (2011) Perifosine-induced inhibition of Akt attenuates brain-derived neurotrophic factor/TrkB-induced chemoresistance in neuroblastoma in vivo. Cancer 117(23):5412–5422. https://doi.org/10.1002/cncr.26133

    Article  CAS  PubMed  Google Scholar 

  148. Lee J, Jiffar T, Kupferman ME (2012) A novel role for BDNF-TrkB in the regulation of chemotherapy resistance in head and neck squamous cell carcinoma. PLoS ONE 7(1):e30246. https://doi.org/10.1371/journal.pone.0030246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang S, Guo D, Luo W, Zhang Q, Zhang Y, Li C, Lu Y, Cui Z et al (2010) TrkB is highly expressed in NSCLC and mediates BDNF-induced the activation of Pyk2 signaling and the invasion of A549 cells. BMC Cancer 10:43. https://doi.org/10.1186/1471-2407-10-43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yuan Y, Ye HQ, Ren QC (2018) Upregulation of the BDNF/TrKB pathway promotes epithelial-mesenchymal transition, as well as the migration and invasion of cervical cancer. Int J Oncol 52(2):461–472. https://doi.org/10.3892/ijo.2017.4230

    Article  CAS  PubMed  Google Scholar 

  151. Jia S, Wang W, Hu Z, Shan C, Wang L, Wu B, Yang Z, Yang X et al (2015) BDNF mediated TrkB activation contributes to the EMT progression and the poor prognosis in human salivary adenoid cystic carcinoma. Oral Oncol 51(1):64–70. https://doi.org/10.1016/j.oraloncology.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  152. Brunelli A, Dimauro I, Sgro P, Emerenziani GP, Magi F, Baldari C, Guidetti L, Di Luigi L et al (2012) Acute exercise modulates BDNF and pro-BDNF protein content in immune cells. Med Sci Sports Exerc 44(10):1871–1880. https://doi.org/10.1249/MSS.0b013e31825ab69b

    Article  CAS  PubMed  Google Scholar 

  153. Moalem G, Gdalyahu A, Shani Y, Otten U, Lazarovici P, Cohen IR, Schwartz M (2000) Production of neurotrophins by activated T cells: implications for neuroprotective autoimmunity. J Autoimmun 15(3):331–345. https://doi.org/10.1006/jaut.2000.0441

    Article  CAS  PubMed  Google Scholar 

  154. Camara ML, Corrigan F, Jaehne EJ, Jawahar MC, Anscomb H, Baune BT (2015) Tumor necrosis factor alpha and its receptors in behaviour and neurobiology of adult mice, in the absence of an immune challenge. Behav Brain Res 290:51–60. https://doi.org/10.1016/j.bbr.2015.04.040

    Article  CAS  PubMed  Google Scholar 

  155. Xu D, Lian D, Wu J, Liu Y, Zhu M, Sun J, He D, Li L (2017) Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis. J Neuroinflammation 14(1):156. https://doi.org/10.1186/s12974-017-0930-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Han R, Liu Z, Sun N, Liu S, Li L, Shen Y, Xiu J, Xu Q (2019) BDNF alleviates neuroinflammation in the hippocampus of type 1 diabetic mice via blocking the aberrant HMGB1/RAGE/NF-kappaB pathway. Aging Dis 10(3):611–625. https://doi.org/10.14336/AD.2018.0707

    Article  PubMed  PubMed Central  Google Scholar 

  157. Stillman J, Martin A, Miguez MJ, McDaniel HR, Konefal J, Woolger JM, Lewis JE (2020) Relationship between brain-derived neurotrophic factor and immune function during dietary supplement treatment of elderly with Alzheimer’s dementia. J Clin Transl Res 5(2):68–75

    PubMed  PubMed Central  Google Scholar 

  158. Weinstock-Guttman B, Zivadinov R, Tamano-Blanco M, Abdelrahman N, Badgett D, Durfee J, Hussein S, Feichter J et al (2007) Immune cell BDNF secretion is associated with white matter volume in multiple sclerosis. J Neuroimmunol 188(1–2):167–174. https://doi.org/10.1016/j.jneuroim.2007.06.003

    Article  CAS  PubMed  Google Scholar 

  159. Linker RA, Lee DH, Demir S, Wiese S, Kruse N, Siglienti I, Gerhardt E, Neumann H et al (2010) Functional role of brain-derived neurotrophic factor in neuroprotective autoimmunity: therapeutic implications in a model of multiple sclerosis. Brain 133(Pt 8):2248–2263. https://doi.org/10.1093/brain/awq179

    Article  PubMed  Google Scholar 

  160. Islas-Hernandez A, Aguilar-Talamantes HS, Bertado-Cortes B, Mejia-delCastillo GJ, Carrera-Pineda R, Cuevas-Garcia CF, Garcia-delaTorre P (2018) BDNF and Tau as biomarkers of severity in multiple sclerosis. Biomark Med 12(7):717–726. https://doi.org/10.2217/bmm-2017-0374

    Article  CAS  PubMed  Google Scholar 

  161. Hu ZL, Luo C, Hurtado PR, Li H, Wang S, Hu B, Xu JM, Liu Y et al (2021) Brain-derived neurotrophic factor precursor in the immune system is a novel target for treating multiple sclerosis. Theranostics 11(2):715–730. https://doi.org/10.7150/thno.51390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yoshimura S, Ochi H, Isobe N, Matsushita T, Motomura K, Matsuoka T, Minohara M, Kira J (2010) Altered production of brain-derived neurotrophic factor by peripheral blood immune cells in multiple sclerosis. Mult Scler 16(10):1178–1188. https://doi.org/10.1177/1352458510375706

    Article  CAS  PubMed  Google Scholar 

  163. Li L, Shui QX, Zhao ZY (2003) Regulation of brain-derived neurotrophic factor (BDNF) expression following antibiotic treatment of experimental bacterial meningitis. J Child Neurol 18(12):828–834. https://doi.org/10.1177/088307380301801202

    Article  PubMed  Google Scholar 

  164. Alvin Z, Laurence GG, Coleman BR, Zhao A, Hajj-Moussa M, Haddad GE (2011) Regulation of L-type inward calcium channel activity by captopril and angiotensin II via the phosphatidyl inositol 3-kinase pathway in cardiomyocytes from volume-overload hypertrophied rat hearts. Can J Physiol Pharmacol 89(3):206–215. https://doi.org/10.1139/Y11-011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Xu D, Lian D, Zhang Z, Liu Y, Sun J, Li L (2017) Brain-derived neurotrophic factor is regulated via MyD88/NF-kappaB signaling in experimental Streptococcus pneumoniae meningitis. Sci Rep 7(1):3545. https://doi.org/10.1038/s41598-017-03861-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mitchell JA, Paul-Clark MJ, Clarke GW, McMaster SK, Cartwright N (2007) Critical role of toll-like receptors and nucleotide oligomerisation domain in the regulation of health and disease. J Endocrinol 193(3):323–330. https://doi.org/10.1677/JOE-07-0067

    Article  CAS  PubMed  Google Scholar 

  167. Lian D, He D, Wu J, Liu Y, Zhu M, Sun J, Chen F, Li L (2016) Exogenous BDNF increases neurogenesis in the hippocampus in experimental Streptococcus pneumoniae meningitis. J Neuroimmunol 294:46–55. https://doi.org/10.1016/j.jneuroim.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  168. Bifrare YD, Kummer J, Joss P, Tauber MG, Leib SL (2005) Brain-derived neurotrophic factor protects against multiple forms of brain injury in bacterial meningitis. J Infect Dis 191(1):40–45. https://doi.org/10.1086/426399

    Article  CAS  PubMed  Google Scholar 

  169. Han BH, D’Costa A, Back SA, Parsadanian M, Patel S, Shah AR, Gidday JM, Srinivasan A et al (2000) BDNF blocks caspase-3 activation in neonatal hypoxia-ischemia. Neurobiol Dis 7(1):38–53. https://doi.org/10.1006/nbdi.1999.0275

    Article  CAS  PubMed  Google Scholar 

  170. Han BH, Holtzman DM (2000) BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 20(15):5775–5781

    Article  CAS  Google Scholar 

  171. Hisatomi T, Sakamoto T, Murata T, Yamanaka I, Oshima Y, Hata Y, Ishibashi T, Inomata H et al (2001) Relocalization of apoptosis-inducing factor in photoreceptor apoptosis induced by retinal detachment in vivo. Am J Pathol 158(4):1271–1278. https://doi.org/10.1016/S0002-9440(10)64078-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Galvin KA, Oorschot DE (2003) Continuous low-dose treatment with brain-derived neurotrophic factor or neurotrophin-3 protects striatal medium spiny neurons from mild neonatal hypoxia/ischemia: a stereological study. Neuroscience 118(4):1023–1032. https://doi.org/10.1016/s0306-4522(03)00066-6

    Article  CAS  PubMed  Google Scholar 

  173. Ventimiglia R, Mather PE, Jones BE, Lindsay RM (1995) The neurotrophins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differentiation of striatal neurons in vitro. Eur J Neurosci 7(2):213–222. https://doi.org/10.1111/j.1460-9568.1995.tb01057.x

    Article  CAS  PubMed  Google Scholar 

  174. Qiao LY, Shen S, Liu M, Xia C, Kay JC, Zhang QL (2016) Inflammation and activity augment brain-derived neurotrophic factor peripheral release. Neuroscience 318:114–121. https://doi.org/10.1016/j.neuroscience.2016.01.018

    Article  CAS  PubMed  Google Scholar 

  175. Lai NS, Yu HC, Huang Tseng HY, Hsu CW, Huang HB, Lu MC (2021) Increased serum levels of brain-derived neurotrophic factor contribute to inflammatory responses in patients with rheumatoid arthritis. Int J Mol Sci 22 (4). doi:https://doi.org/10.3390/ijms22041841

  176. Reddy MS (2010) Depression: the disorder and the burden. Indian J Psychol Med 32(1):1–2. https://doi.org/10.4103/0253-7176.70510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ahmed S, Malemud CJ, Koch AE, Athar M, Taub DD (2014) Cytokines and chemokines: disease models, mechanisms, and therapies. Mediators Inflamm 2014:296356. https://doi.org/10.1155/2014/296356

    Article  PubMed  PubMed Central  Google Scholar 

  178. Galic MA, Riazi K, Pittman QJ (2012) Cytokines and brain excitability. Front Neuroendocrinol 33(1):116–125. https://doi.org/10.1016/j.yfrne.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  179. Riazi K, Galic MA, Pittman QJ (2010) Contributions of peripheral inflammation to seizure susceptibility: cytokines and brain excitability. Epilepsy Res 89(1):34–42. https://doi.org/10.1016/j.eplepsyres.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  180. Duman RS, Malberg J, Nakagawa S, D’Sa C (2000) Neuronal plasticity and survival in mood disorders. Biol Psychiatry 48(8):732–739. https://doi.org/10.1016/s0006-3223(00)00935-5

    Article  CAS  PubMed  Google Scholar 

  181. D’Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4(3):183–194. https://doi.org/10.1034/j.1399-5618.2002.01203.x

    Article  CAS  PubMed  Google Scholar 

  182. Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8:430. https://doi.org/10.3389/fncel.2014.00430

    Article  PubMed  PubMed Central  Google Scholar 

  183. Molendijk ML, Bus BA, Spinhoven P, Penninx BW, Kenis G, Prickaerts J, Voshaar RC, Elzinga BM (2011) Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment. Mol Psychiatry 16(11):1088–1095. https://doi.org/10.1038/mp.2010.98

    Article  CAS  PubMed  Google Scholar 

  184. Hsieh MT, Lin CC, Lee CT, Huang TL (2019) Abnormal brain-derived neurotrophic factor exon IX promoter methylation, protein, and mRNA levels in patients with major depressive disorder. J Clin Med 8 (5). doi:https://doi.org/10.3390/jcm8050568

  185. Schroter K, Brum M, Brunkhorst-Kanaan N, Tole F, Ziegler C, Domschke K, Reif A, Kittel-Schneider S (2020) Longitudinal multi-level biomarker analysis of BDNF in major depression and bipolar disorder. Eur Arch Psychiatry Clin Neurosci 270(2):169–181. https://doi.org/10.1007/s00406-019-01007-y

    Article  PubMed  Google Scholar 

  186. Chiou YJ, Huang TL (2017) Serum brain-derived neurotrophic factors in Taiwanese patients with drug-naive first-episode major depressive disorder: effects of antidepressants. Int J Neuropsychopharmacol 20(3):213–218. https://doi.org/10.1093/ijnp/pyw096

    Article  CAS  PubMed  Google Scholar 

  187. Chiou YJ, Huang TL (2019) Accuracy of brain-derived neurotrophic factor levels for differentiating between Taiwanese patients with major depressive disorder or schizophrenia and healthy controls. PLoS ONE 14(2):e0212373. https://doi.org/10.1371/journal.pone.0212373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hsieh M, Lin CC, Huang TL (2019) Increased brain-derived neurotrophic factor exon IV histone 3 lysine 9 dimethylation in patients with schizophrenia. Taiwan Journal of Psychiatry 33(2):99–104. https://doi.org/10.4103/TPSY.TPSY_18_19

    Article  Google Scholar 

  189. Caldieraro MA, McKee M, Leistner-Segal S, Vares EA, Kubaski F, Spanemberg L, Brusius-Facchin AC, Fleck MP et al (2018) Val66Met polymorphism association with serum BDNF and inflammatory biomarkers in major depression. World J Biol Psychiatry 19(5):402–409. https://doi.org/10.1080/15622975.2017.1347713

    Article  PubMed  Google Scholar 

  190. Hosang GM, Shiles C, Tansey KE, McGuffin P, Uher R (2014) Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis. BMC Med 12:7. https://doi.org/10.1186/1741-7015-12-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Chen ZY, Bath K, McEwen B, Hempstead B, Lee F (2008) Impact of genetic variant BDNF (Val66Met) on brain structure and function. Novartis Found Symp 289:180–188. https://doi.org/10.1002/9780470751251.ch14 (discussion 188-195)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Groves JO (2007) Is it time to reassess the BDNF hypothesis of depression? Mol Psychiatry 12(12):1079–1088. https://doi.org/10.1038/sj.mp.4002075

    Article  CAS  PubMed  Google Scholar 

  193. Chai HH, Fu XC, Ma L, Sun HT, Chen GZ, Song MY, Chen WX, Chen YS et al (2019) The chemokine CXCL1 and its receptor CXCR2 contribute to chronic stress-induced depression in mice. FASEB J 33(8):8853–8864. https://doi.org/10.1096/fj.201802359RR

    Article  CAS  PubMed  Google Scholar 

  194. Walker AK, Budac DP, Bisulco S, Lee AW, Smith RA, Beenders B, Kelley KW, Dantzer R (2013) NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology 38(9):1609–1616. https://doi.org/10.1038/npp.2013.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Francija E, Petrovic Z, Brkic Z, Mitic M, Radulovic J, Adzic M (2019) Disruption of the NMDA receptor GluN2A subunit abolishes inflammation-induced depression. Behav Brain Res 359:550–559. https://doi.org/10.1016/j.bbr.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  196. Crupi R, Cuzzocrea S (2016) Neuroinflammation and immunity: a new pharmacological target in depression. CNS Neurol Disord Drug Targets 15(4):464–476. https://doi.org/10.2174/1871527315666160321105339

    Article  CAS  PubMed  Google Scholar 

  197. Jeon SW, Kim YK (2016) Neuroinflammation and cytokine abnormality in major depression: cause or consequence in that illness? World J Psychiatry 6(3):283–293. https://doi.org/10.5498/wjp.v6.i3.283

    Article  PubMed  PubMed Central  Google Scholar 

  198. Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64(6):527–532. https://doi.org/10.1016/j.biopsych.2008.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258. https://doi.org/10.1124/pr.111.005108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Duman RS (2014) Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections. Dialogues Clin Neurosci 16(1):11–27

    Article  Google Scholar 

  201. Gold PW (2021) The PPARg system in major depression: pathophysiologic and therapeutic implications. Int J Mol Sci 22 (17). doi:https://doi.org/10.3390/ijms22179248

  202. Lee BH, Kim YK (2010) The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig 7(4):231–235. https://doi.org/10.4306/pi.2010.7.4.231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Kariharan T, Nanayakkara G, Parameshwaran K, Bagasrawala I, Ahuja M, Abdel-Rahman E, Amin AT, Dhanasekaran M et al (2015) Central activation of PPAR-gamma ameliorates diabetes induced cognitive dysfunction and improves BDNF expression. Neurobiol Aging 36(3):1451–1461. https://doi.org/10.1016/j.neurobiolaging.2014.09.028

    Article  CAS  PubMed  Google Scholar 

  204. Zhou C, Zhang H, Qin Y, Tian T, Xu B, Chen J, Zhou X, Zeng L et al (2018) A systematic review and meta-analysis of deep brain stimulation in treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 82:224–232. https://doi.org/10.1016/j.pnpbp.2017.11.012

    Article  PubMed  Google Scholar 

  205. Dandekar MP, Fenoy AJ, Carvalho AF, Soares JC, Quevedo J (2018) Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications. Mol Psychiatry 23(5):1094–1112. https://doi.org/10.1038/mp.2018.2

    Article  CAS  PubMed  Google Scholar 

  206. Martis LS, Wiborg O, Holmes MC, Harris AP (2019) BDNF(+/-) rats exhibit depressive phenotype and altered expression of genes relevant in mood disorders. Genes Brain Behav 18(2):e12546. https://doi.org/10.1111/gbb.12546

    Article  CAS  PubMed  Google Scholar 

  207. Tadic A, Muller-Engling L, Schlicht KF, Kotsiari A, Dreimuller N, Kleimann A, Bleich S, Lieb K et al (2014) Methylation of the promoter of brain-derived neurotrophic factor exon IV and antidepressant response in major depression. Mol Psychiatry 19(3):281–283. https://doi.org/10.1038/mp.2013.58

    Article  CAS  PubMed  Google Scholar 

  208. Lieb K, Dreimuller N, Wagner S, Schlicht K, Falter T, Neyazi A, Muller-Engling L, Bleich S et al (2018) BDNF plasma levels and BDNF Exon IV promoter methylation as predictors for antidepressant treatment response. Front Psychiatry 9:511. https://doi.org/10.3389/fpsyt.2018.00511

    Article  PubMed  PubMed Central  Google Scholar 

  209. Keller S, Sarchiapone M, Zarrilli F, Videtic A, Ferraro A, Carli V, Sacchetti S, Lembo F et al (2010) Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch Gen Psychiatry 67(3):258–267. https://doi.org/10.1001/archgenpsychiatry.2010.9

    Article  CAS  PubMed  Google Scholar 

  210. Sakata K, Woo NH, Martinowich K, Greene JS, Schloesser RJ, Shen L, Lu B (2009) Critical role of promoter IV-driven BDNF transcription in GABAergic transmission and synaptic plasticity in the prefrontal cortex. Proc Natl Acad Sci U S A 106(14):5942–5947. https://doi.org/10.1073/pnas.0811431106

    Article  PubMed  PubMed Central  Google Scholar 

  211. Castren E (2014) Neurotrophins and psychiatric disorders. Handb Exp Pharmacol 220:461–479. https://doi.org/10.1007/978-3-642-45106-5_17

    Article  CAS  PubMed  Google Scholar 

  212. Castren E, Kojima M (2017) Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis 97(Pt B):119–126. https://doi.org/10.1016/j.nbd.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  213. Green MJ, Matheson SL, Shepherd A, Weickert CS, Carr VJ (2011) Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry 16(9):960–972. https://doi.org/10.1038/mp.2010.88

    Article  CAS  PubMed  Google Scholar 

  214. Noto MN, Maes M, Vargas Nunes SO, Ota VK, Cavalcante D, Oliveira G, Rossaneis AC, Verri WA Jr et al (2021) BDNF in antipsychotic naive first episode psychosis: effects of risperidone and the immune-inflammatory response system. J Psychiatr Res 141:206–213. https://doi.org/10.1016/j.jpsychires.2021.07.011

    Article  PubMed  Google Scholar 

  215. Lin Z, Su Y, Zhang C, Xing M, Ding W, Liao L, Guan Y, Li Z et al (2013) The interaction of BDNF and NTRK2 gene increases the susceptibility of paranoid schizophrenia. PLoS ONE 8(9):e74264. https://doi.org/10.1371/journal.pone.0074264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Dong Z, Sun X, Pan C, Lu T, Han Y, Wang L, Yan H, Dong L et al (2016) Association of DISC1, BDNF, and COMT polymorphisms with exploratory eye movement of schizophrenia in a Chinese Han population. Psychiatr Genet 26(6):258–265. https://doi.org/10.1097/YPG.0000000000000138

    Article  CAS  PubMed  Google Scholar 

  217. Farkas K, Réthelyi J, Polgár P, Benkovits J, Fábián Á, Czobor P, Bitter I (2011) BDNF and DISC1 are associated with cognitive dysfunction but not with schizophrenia in a hungarian sample. Eur Psychiatry 26(S2):805–805. https://doi.org/10.1016/S0924-9338(11)72510-X

    Article  Google Scholar 

  218. Yi H, Hu J, Qian J, Hackam AS (2012) Expression of brain-derived neurotrophic factor is regulated by the Wnt signaling pathway. NeuroReport 23(3):189–194. https://doi.org/10.1097/WNR.0b013e32834fab06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Mallei A, Ieraci A, Corna S, Tardito D, Lee FS, Popoli M (2018) Global epigenetic analysis of BDNF Val66Met mice hippocampus reveals changes in dendrite and spine remodeling genes. Hippocampus 28(11):783–795. https://doi.org/10.1002/hipo.22991

    Article  CAS  PubMed  Google Scholar 

  220. Stoyanov D, Maes MH (2021) How to construct neuroscience-informed psychiatric classification? Towards nomothetic networks psychiatry. World J Psychiatry 11(1):1–12. https://doi.org/10.5498/wjp.v11.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  221. Maes M, Vojdani A, Galecki P, Kanchanatawan B (2020) How to construct a bottom-up nomothetic network model and disclose novel nosological classes by integrating risk resilience and adverse outcome pathways with the phenome of schizophrenia. Brain Sci 10(9):645. https://doi.org/10.3390/brainsci10090645

    Article  CAS  PubMed Central  Google Scholar 

  222. Maes M, Rachayon M, Jirakran K, Sodsai P, Klinchanhom S, Gałecki P, Sughondhabirom A, Basta-Kaim A (2022) The immune profile of major dysmood disorder: proof of concept and mechanism using the precision nomothetic psychiatry approach. Cells 11(7):1183. https://doi.org/10.3390/cells11071183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the National University Complex for Biomedical and Applied Research, with participation in BBMRI-ERIC (NUCBPI-BBMRI.BG), within the national road map for research infrastructure (Contract No. DO1-395/18.12.2020).

Author information

Authors and Affiliations

Authors

Contributions

All contributing authors have participated in the preparation of the manuscript.

Corresponding author

Correspondence to Michael Maes.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nikolay Mehterov and Danail Minchev shared first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehterov, N., Minchev, D., Gevezova, M. et al. Interactions Among Brain-Derived Neurotrophic Factor and Neuroimmune Pathways Are Key Components of the Major Psychiatric Disorders. Mol Neurobiol 59, 4926–4952 (2022). https://doi.org/10.1007/s12035-022-02889-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02889-1

Keywords

Navigation