Skip to main content

Advertisement

Log in

High TrkB expression levels are associated with poor prognosis and EMT induction in colorectal cancer cells

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

The neurotrophic receptor tropomyosin related kinase (TrkB) is associated with tumor progression in neuroblastoma and certain human malignancies. Recent reports indicate TrkB may participate in the epithelial–mesenchymal transition (EMT). This study investigates whether TrkB expression is associated with the clinical outcome of colorectal cancer (CRC) patients and whether TrkB induces EMT in CRC cells.

Methods

TrkB and E-cadherin expression in surgical tissue samples and clinicopathological data from 102 CRC patients were analyzed by real-time polymerase chain reaction and immunohistochemistry. The biological role of TrkB in CRC was analyzed using RNA interference against TrkB in the CRC cell line SW480 to assess tumor progression and the correlation between TrkB and E-cadherin expression.

Results

Patients with high TrkB mRNA expression in clinical samples had a significantly poorer prognosis relative to those with low TrkB levels (p = 0.03). TrkB was inversely correlated with E-cadherin at both the mRNA and protein levels. In vitro, cell proliferation (p = 0.02), migration (p < 0.001), and invasion (p < 0.001) were significantly inhibited by TrkB knockdown while the anoikis rate increased in TrkB siRNA-transfected cells compared to control siRNA. Interestingly, E-cadherin expression in TrkB siRNA-transfected cells was higher than in control cells and vimentin was lower conversely.

Conclusions

High TrkB expression is associated with poor prognosis in CRC patients and enhanced malignant potential in terms of proliferation, migration, invasion, and anoikis inhibition in CRC cells. These results indicate TrkB could induce EMT and play an important role in CRC progression to metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.

    Article  PubMed  Google Scholar 

  2. Klein R, Nanduri V, Jing SA, Lamballe F, Tapley P, Bryant S, et al. The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell. 1991;66:395–403.

    Article  PubMed  CAS  Google Scholar 

  3. Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper DS. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004;430:1034–9.

    Article  PubMed  CAS  Google Scholar 

  4. Jaboin J, Kim CJ, Kaplan DR, Thiele CJ. Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res. 2002;62:6756–63.

    PubMed  CAS  Google Scholar 

  5. Nakamura K, Martin KC, Jackson JK, Beppu K, Woo CW, Thiele CJ. Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res. 2006;66:4249–55.

    Article  PubMed  CAS  Google Scholar 

  6. Dionne CA, Camoratto AM, Jani JP, Emerson E, Neff N, Vaught JL, et al. Cell cycle-independent death of prostate adenocarcinoma is induced by the trk tyrosine kinase inhibitor CEP-751 (KT6587). Clin Cancer Res. 1998;4:1887–98.

    PubMed  CAS  Google Scholar 

  7. Miknyoczki SJ, Lang D, Huang L, Klein-Szanto AJ, Dionne CA, Ruggeri BA. Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior. Int J Cancer. 1999;81:417–27.

    Article  PubMed  CAS  Google Scholar 

  8. Perez-Pinera P, Hernandez T, Garcia-Suarez O, de Carlos F, Germana A, Del Valle M, et al. The Trk tyrosine kinase inhibitor K252a regulates growth of lung adenocarcinomas. Mol Cell Biochem. 2007;295:19–26.

    Article  PubMed  CAS  Google Scholar 

  9. Yu X, Liu L, Cai B, He Y, Wan X. Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci. 2008;99:543–52.

    Article  PubMed  CAS  Google Scholar 

  10. Yu Y, Zhang S, Wang X, Yang Z, Ou G. Overexpression of TrkB promotes the progression of colon cancer. APMIS. 2010;118:188–95.

    Article  PubMed  CAS  Google Scholar 

  11. Tanaka K, Mohri Y, Nishioka J, Kobayashi M, Ohi M, Miki C, et al. Neurotrophic receptor, tropomyosin-related kinase B as an independent prognostic marker in gastric cancer patients. J Surg Oncol. 2009;99:307–10.

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka K, Mohri Y, Nishioka J, Ohi M, Yokoe T, Miki C, et al. Neurotrophic receptor, tropomyosin-related kinase B, as a chemoresistant marker in oesophageal cancer. Clin Oncol (R Coll Radiol). 2009;21:362–3.

    Article  CAS  Google Scholar 

  13. Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn. 2005;233:706–20.

    Article  PubMed  CAS  Google Scholar 

  14. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–81.

    Article  PubMed  CAS  Google Scholar 

  15. Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev. 2003;120:1351–83.

    Article  PubMed  CAS  Google Scholar 

  16. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    Article  PubMed  CAS  Google Scholar 

  17. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Natl Rev Mol Cell Biol. 2006;7:131–42.

    Article  CAS  Google Scholar 

  18. Tsanou E, Peschos D, Batistatou A, Charalabopoulos A, Charalabopoulos K. The E-cadherin adhesion molecule and colorectal cancer. A global literature approach. Anticancer Res. 2008;28:3815–26.

    PubMed  Google Scholar 

  19. Kupferman ME, Jiffar T, El-Naggar A, Yilmaz T, Zhou G, Xie T, et al. TrkB induces EMT and has a key role in invasion of head and neck squamous cell carcinoma. Oncogene. 2010;29:2047–59.

    Article  PubMed  CAS  Google Scholar 

  20. Smit MA, Geiger TR, Song JY, Gitelman I, Peeper DS. A Twist-Snail axis critical for TrkB-induced epithelial-mesenchymal transition-like transformation, anoikis resistance, and metastasis. Mol Cell Biol. 2009;29:3722–37.

    Article  PubMed  CAS  Google Scholar 

  21. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol. 1994;124:619–26.

    Article  PubMed  CAS  Google Scholar 

  22. Brodeur GM, Nakagawara A, Yamashiro DJ, Ikegaki N, Liu XG, Azar CG, et al. Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol. 1997;31:49–55.

    Article  PubMed  CAS  Google Scholar 

  23. Han L, Zhang Z, Qin W, Sun W. Neurotrophic receptor TrkB: is it a predictor of poor prognosis for carcinoma patients? Med Hypotheses. 2007;68:407–9.

    Article  PubMed  CAS  Google Scholar 

  24. Au CW, Siu MK, Liao X, Wong ES, Ngan HY, Tam KF, et al. Tyrosine kinase B receptor and BDNF expression in ovarian cancers—effect on cell migration, angiogenesis and clinical outcome. Cancer Lett. 2009;281:151–61.

    Article  PubMed  CAS  Google Scholar 

  25. Matsumoto K, Wada RK, Yamashiro JM, Kaplan DR, Thiele CJ. Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res. 1995;55:1798–806.

    PubMed  CAS  Google Scholar 

  26. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68:3645–54.

    Article  PubMed  CAS  Google Scholar 

  27. Chiarugi P, Giannoni E. Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol. 2008;76:1352–64.

    Article  PubMed  CAS  Google Scholar 

  28. Chang LH, Chen CH, Huang DY, Pai HC, Pan SL, Teng CM. Thrombin induces expression of twist and cell motility via the hypoxia-inducible factor-1alpha translational pathway in colorectal cancer cells. J Cell Physiol. 2011;226:1060–8.

    Article  PubMed  CAS  Google Scholar 

  29. Shioiri M, Shida T, Koda K, Oda K, Seike K, Nishimura M, et al. Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br J Cancer. 2006;94:1816–22.

    Article  PubMed  CAS  Google Scholar 

  30. Yang AD, Fan F, Camp ER, van Buren G, Liu W, Somcio R, et al. Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res. 2006;12:4147–53.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank M. Ueeda for technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujikawa, H., Tanaka, K., Toiyama, Y. et al. High TrkB expression levels are associated with poor prognosis and EMT induction in colorectal cancer cells. J Gastroenterol 47, 775–784 (2012). https://doi.org/10.1007/s00535-012-0532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-012-0532-0

Keywords

Navigation