Skip to main content

Advertisement

Log in

Mitochondrial Dysfunction and Mitophagy Closely Cooperate in Neurological Deficits Associated with Alzheimer’s Disease and Type 2 Diabetes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) and type 2 diabetes (T2D) are known to be correlated in terms of their epidemiology, histopathology, and molecular and biochemical characteristics. The prevalence of T2D leading to AD is approximately 50–70%. Moreover, AD is often considered type III diabetes because of the common risk factors. Uncontrolled T2D may affect the brain, leading to memory and learning deficits in patients. In addition, metabolic disorders and impaired oxidative phosphorylation in AD and T2D patients suggest that mitochondrial dysfunction is involved in both diseases. The dysregulation of pathways involved in maintaining mitochondrial dynamics, biogenesis and mitophagy are responsible for exacerbating the impact of hyperglycemia on the brain and neurodegeneration under T2D conditions. The first section of this review describes the recent views on mitochondrial dysfunction that connect these two disease conditions, as the pathways are observed to overlap. The second section of the review highlights the importance of different mitochondrial miRNAs (mitomiRs) involved in the regulation of mitochondrial dynamics and their association with the pathogenesis of T2D and AD. Therefore, targeting mitochondrial biogenesis and mitophagy pathways, along with the use of mitomiRs, could be a potent therapeutic strategy for T2D-related AD. The last section of the review highlights the known drugs targeting mitochondrial function for the treatment of both disease conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li X, Leng S, Song D (2015) Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clinical Interventions in Aging 549

  2. Jayaraman A, Pike CJ (2014) Alzheimer’s disease and type 2 diabetes: multiple mechanisms contribute to interactions. Current Diabetes Reports 14:476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lu F-P, Lin K-P, Kuo H-K (2009) Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PLoS One 4:e4144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Xia W, Wang S, Sun Z, Bai F, Zhou Y, Yang Y, Wang P, Huang Y et al (2013) Altered baseline brain activity in type 2 diabetes: a resting-state fMRI study. Psychoneuroendocrinology 38:2493–2501

    Article  PubMed  Google Scholar 

  5. Moran C, Phan TG, Chen J, Blizzard L, Beare R, Venn A, Munch G, Wood AG et al (2013) Brain atrophy in type 2 diabetes: regional distribution and influence on cognition. Diabetes Care 36:4036–4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anello M, Lupi R, Spampinato D, Piro S, Masini M, Boggi U, del Prato S, Rabuazzo AM et al (2005) Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia 48:282–289

    Article  CAS  PubMed  Google Scholar 

  7. Albensi BC (2019) Dysfunction of mitochondria: implications for Alzheimer’s disease. Int Rev Neurobiol 145:13–27

    Article  CAS  PubMed  Google Scholar 

  8. Hauptmann S, Scherping I, Dröse S, Brandt U, Schulz KL, Jendrach M, Leuner K, Eckert A et al (2009) Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging 30:1574–1586

    Article  CAS  PubMed  Google Scholar 

  9. Reddy AP, Reddy PH (2017) Mitochondria-targeted molecules as potential drugs to treat patients with Alzheimer’s disease. Prog Mol Biol Transl Sci 146:173–201

    Article  CAS  PubMed  Google Scholar 

  10. Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:270–279. https://doi.org/10.1016/j.jalz.2011.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vos SJB, Verhey F, Frölich L, Kornhuber J, Wiltfang J, Maier W, Peters O, Rüther E et al (2015) Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain 138:1327–1338

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nooyens ACJ, Baan CA, Spijkerman AMW, Verschuren WMM (2010) Type 2 diabetes and cognitive decline in middle-aged men and women: the Doetinchem Cohort Study. Diabetes Care 33:1964–1969

    Article  PubMed  PubMed Central  Google Scholar 

  13. Archer SL (2013) Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251

    Article  CAS  PubMed  Google Scholar 

  14. Okamoto K, Shaw JM (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 39:503–536

    Article  CAS  PubMed  Google Scholar 

  15. Flippo KH, Strack S (2017) Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 130:671–681

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62:341–360

    Article  PubMed  PubMed Central  Google Scholar 

  17. Williams M, Caino MC (2018) Mitochondrial dynamics in type 2 diabetes and cancer. Front Endocrinol 9:211

    Article  Google Scholar 

  18. Eisner V, Picard M, Hajnóczky G (2018) Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol 20:755–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding W-X, Yin X-M (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393:547–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burgos-Morón E, Abad-Jiménez Z, Marañón AM de, et al (2019) Relationship between oxidative stress, ER stress, and inflammation in type 2 diabetes: the battle continues. J Clin Med Res 8 https://doi.org/10.3390/jcm8091385

  21. Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Anal Technol Biomed Life Sci 827:65–75

    Article  CAS  Google Scholar 

  22. Winiarska-Mieczan A, Baranowska-Wójcik E, Kwiecień M, Grela ER, Szwajgier D, Kwiatkowska K, Kiczorowska B (2020) The role of dietary antioxidants in the pathogenesis of neurodegenerative diseases and their impact on cerebral oxidoreductive balance. Nutrients 12. https://doi.org/10.3390/nu12020435

  23. Cadonic C, Sabbir MG, Albensi BC (2016) Mechanisms of mitochondrial dysfunction in Alzheimer’s disease. Mol Neurobiol 53:6078–6090

    Article  CAS  PubMed  Google Scholar 

  24. Perez Ortiz JM, Swerdlow RH (2019) Mitochondrial dysfunction in Alzheimer’s disease: role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol 176:3489–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cash AD, Perry G, Ogawa O, Raina AK, Zhu X, Smith MA (2002) Book review: is Alzheimer’s disease a mitochondrial disorder? Neuroscientist 8:489–496

    Article  CAS  PubMed  Google Scholar 

  26. Bhatti JS, Bhatti GK, Reddy PH (2017) Mitochondrial dysfunction and oxidative stress in metabolic disorders—a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol basis Dis 1863:1066–1077

    Article  CAS  PubMed  Google Scholar 

  27. Olokoba AB, Obateru OA, Olokoba LB (2012) Type 2 diabetes mellitus: a review of current trends. Oman medical journal 27:269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DeFronzo RA, Ferrannini E, Groop L et al (2015) Type 2 diabetes mellitus. Nat Rev Dis Primers 1:15019

    Article  PubMed  Google Scholar 

  29. Priyadarshini M, Kamal MA, Greig NH et al (2012) Alzheimer’s disease and type 2 diabetes: exploring the association to obesity and tyrosine hydroxylase. CNS Neurol Disord Drug Targets 11:482–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barbagallo M (2014) Type 2 diabetes mellitus and Alzheimer’s disease. World J Diabetes 5:889–893

    Article  PubMed  PubMed Central  Google Scholar 

  31. Onyango IG, Dennis J, Khan SM (2016) Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis 7:201–214

    Article  PubMed  PubMed Central  Google Scholar 

  32. Santiago JA, Bottero V, Potashkin JA (2019) Transcriptomic and network analysis highlight the association of diabetes at different stages of Alzheimer’s disease. Front Neurosci 13

  33. Baloyannis SJ (2006) Mitochondrial alterations in Alzheimer’s disease. J Alzheimers Dis 9:119–126

    Article  PubMed  Google Scholar 

  34. Sajjad R, Arif R, Shah AA, et al (2018) Pathogenesis of Alzheimer’s disease: role of amyloid-beta and hyperphosphorylated Tau protein. Indian Journal of Pharmaceutical Sciences 80

  35. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    Article  CAS  PubMed  Google Scholar 

  36. Hamley IW (2012) The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization Chemical Reviews 112:5147–5192

    CAS  PubMed  Google Scholar 

  37. Chen G-F, Xu T-H, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 38:1205–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Devi L (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci 26:9057–9068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193

    Article  CAS  PubMed  Google Scholar 

  40. Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357

    Article  PubMed  CAS  Google Scholar 

  41. Tönnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57:1105–1121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hao K, Di Narzo AF, Ho L et al (2015) Shared genetic etiology underlying Alzheimer’s disease and type 2 diabetes. Mol Asp Med 43-44:66–76

    Article  CAS  Google Scholar 

  43. Vieira MNN, Lima-Filho RAS, De Felice FG (2018) Connecting Alzheimer’s disease to diabetes: underlying mechanisms and potential therapeutic targets. Neuropharmacology 136:160–171

    Article  CAS  PubMed  Google Scholar 

  44. Luchsinger JA, Reitz C, Patel B, Tang MX, Manly JJ, Mayeux R (2007) Relation of diabetes to mild cognitive impairment. Arch Neurol 64:570–575

    Article  PubMed  Google Scholar 

  45. Gao Y, Xiao Y, Miao R, Zhao J, Cui M, Huang G, Fei M (2016) The prevalence of mild cognitive impairment with type 2 diabetes mellitus among elderly people in China: a cross-sectional study. Arch Gerontol Geriatr 62:138–142

    Article  PubMed  Google Scholar 

  46. Li W, Wang T, Xiao S (2016) Type 2 diabetes mellitus might be a risk factor for mild cognitive impairment progressing to Alzheimer’s disease. Neuropsychiatr Dis Treat 12:2489–2495

    Article  PubMed  PubMed Central  Google Scholar 

  47. Brands AMA, Biessels GJ, de Haan EHF, Kappelle LJ, Kessels RPC (2005) The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28:726–735

    Article  PubMed  Google Scholar 

  48. Duarte JMN, Agostinho PM, Carvalho RA, Cunha RA (2012) Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice. PLoS One 7:e21899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li W, Sun L, Li G, Xiao S (2019) Prevalence, influence factors and cognitive characteristics of mild cognitive impairment in type 2 diabetes mellitus. Front Aging Neurosci 11:180

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu J, Liu T, Wang W, Ma L, Ma X, Shi S, Gong Q, Wang M (2017) Reduced gray matter volume in patients with type 2 diabetes mellitus. Front Aging Neurosci 9:161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z, Tan M (2018) Diverse roles of mitochondria in immune responses: novel insights into immuno-metabolism. Front Immunol 9:1605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Reis F, Soares, Nunes, Pereira (2012) Diabetic encephalopathy: the role of oxidative stress and inflammation in type 2 diabetes. International Journal of Interferon, Cytokine and Mediator Research 75

  53. Ortiz-Avila O, Esquivel-Martínez M, Olmos-Orizaba BE et al (2015) Avocado oil improves mitochondrial function and decreases oxidative stress in brain of diabetic rats. J Diabetes Res 2015:485759

    Article  PubMed  PubMed Central  Google Scholar 

  54. Carvalho C, Cardoso S, Correia SC, Santos RX, Santos MS, Baldeiras I, Oliveira CR, Moreira PI (2012) Metabolic alterations induced by sucrose intake and Alzheimer’s disease promote similar brain mitochondrial abnormalities. Diabetes 61:1234–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Carvalho C, Machado N, Mota PC, Correia SC, Cardoso S, Santos RX, Santos MS, Oliveira CR et al (2013) Type 2 diabetic and Alzheimer’s disease mice present similar behavioral, cognitive, and vascular anomalies. J Alzheimers Dis 35:623–635

    Article  CAS  PubMed  Google Scholar 

  56. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    Article  CAS  PubMed  Google Scholar 

  57. Losón OC, Song Z, Chen H, Chan DC (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24:659–667

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM (2017) Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biol 11:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ježek P, Dlasková A (2019) Dynamic of mitochondrial network, cristae, and mitochondrial nucleoids in pancreatic β-cells. Mitochondrion 49:245–258

    Article  PubMed  CAS  Google Scholar 

  60. Moreira PI (2012) Alzheimer’s disease and diabetes: an integrative view of the role of mitochondria, oxidative stress, and insulin. J Alzheimers Dis 30(Suppl 2):S199–S215

    Article  PubMed  CAS  Google Scholar 

  61. Kiritoshi S, Nishikawa T, Sonoda K, Kukidome D, Senokuchi T, Matsuo T, Matsumura T, Tokunaga H et al (2003) Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes 52:2570–2577

    Article  CAS  PubMed  Google Scholar 

  62. Ashrafi G, Ryan TA (2017) Glucose metabolism in nerve terminals. Curr Opin Neurobiol 45:156–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chow H-M, Shi M, Cheng A, Gao Y, Chen G, Song X, So RWL, Zhang J et al (2019) Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence. Nat Neurosci 22:1806–1819

    Article  CAS  PubMed  Google Scholar 

  64. Lenzen S (2017) Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells. Biochim Biophys Acta Gen Subj 1861:1929–1942

    Article  CAS  PubMed  Google Scholar 

  65. Quirós PM, Ramsay AJ, Sala D, Fernández-Vizarra E, Rodríguez F, Peinado JR, Fernández-García MS, Vega JA et al (2012) Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. EMBO J 31:2117–2133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sebastián D, Hernández-Alvarez MI, Segalés J et al (2012) Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci U S A 109:5523–5528

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zorzano A, Liesa M, Palacín M (2009) Mitochondrial dynamics as a bridge between mitochondrial dysfunction and insulin resistance. Arch Physiol Biochem 115:1–12

    Article  CAS  PubMed  Google Scholar 

  68. Yu T, Sheu S-S, Robotham JL, Yoon Y (2008) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res 79:341–351

    Article  CAS  PubMed  Google Scholar 

  69. Perry G, Zhu X, Smith MA (2013) Alzheimer’s disease: advances for a new century. IOS Press

  70. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Teleanu RI, Chircov C, Grumezescu AM, Volceanov A, Teleanu DM (2019) Antioxidant therapies for neuroprotection—a review. J Clin Med Res 8:8. https://doi.org/10.3390/jcm8101659

    Article  CAS  Google Scholar 

  72. Shoffner JM (1997) Oxidative phosphorylation defects and Alzheimer’s disease. Neurogenetics 1:13–19

    Article  CAS  PubMed  Google Scholar 

  73. Manczak M, Park BS, Jung Y, Reddy PH (2004) Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. NeuroMolecular Med 5:147–162

    Article  CAS  PubMed  Google Scholar 

  74. Chornenkyy Y, Wang W, Wei A, Nelson PT (2019) Alzheimer’s disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline. Brain Pathol 29:3–17

    Article  PubMed  Google Scholar 

  75. Oliver D, Reddy P (2019) Dynamics of dynamin-related protein 1 in Alzheimer’s disease and other neurodegenerative diseases. Cells 8:961

    Article  CAS  PubMed Central  Google Scholar 

  76. Wang X, Su B, Lee H-G, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Calkins MJ, Reddy PH (2011) Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer’s disease neurons. Biochim Biophys Acta 1812:507–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20:2495–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP, Szeto HH, Park B et al (2010) Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 20:S609–S631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Wang X, Su B, Fujioka H, Zhu X (2008) Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol 173:470–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Santos RX, Correia SC, Alves MG, Oliveira PF, Cardoso S, Carvalho C, Seiça R, Santos MS et al (2014) Mitochondrial quality control systems sustain brain mitochondrial bioenergetics in early stages of type 2 diabetes. Mol Cell Biochem 394:13–22

    Article  CAS  PubMed  Google Scholar 

  82. Leinninger GM, Backus C, Sastry AM, Yi YB, Wang CW, Feldman EL (2006) Mitochondria in DRG neurons undergo hyperglycemic mediated injury through Bim, Bax and the fission protein Drp1. Neurobiol Dis 23:11–22

    Article  CAS  PubMed  Google Scholar 

  83. Edwards JL, Quattrini A, Lentz SI, Figueroa-Romero C, Cerri F, Backus C, Hong Y, Feldman EL (2010) Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia 53:160–169

    Article  CAS  PubMed  Google Scholar 

  84. Vincent AM, Edwards JL, McLean LL et al (2010) Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol 120:477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang S, Wang Y, Gan X, Fang D, Zhong C, Wu L, Hu G, Sosunov AA et al (2015) Drp1-mediated mitochondrial abnormalities link to synaptic injury in diabetes model. Diabetes 64:1728–1742

    Article  CAS  PubMed  Google Scholar 

  86. Liu J, Shen W, Zhao B, Wang Y, Wertz K, Weber P, Zhang P (2009) Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: hope from natural mitochondrial nutrients. Adv Drug Deliv Rev 61:1343–1352

    Article  CAS  PubMed  Google Scholar 

  87. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    Article  CAS  PubMed  Google Scholar 

  88. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Anderson RM, Barger JL, Edwards MG, Braun KH, O’Connor CE, Prolla TA, Weindruch R (2008) Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell 7:101–111

    Article  CAS  PubMed  Google Scholar 

  90. Hoeks J, Hesselink MKC, Russell AP, Mensink M, Saris WHM, Mensink RP, Schrauwen P (2006) Peroxisome proliferator-activated receptor-γ coactivator-1 and insulin resistance: acute effect of fatty acids. Diabetologia 49:2419–2426

    Article  CAS  PubMed  Google Scholar 

  91. Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349–352

    Article  CAS  PubMed  Google Scholar 

  92. Scalzo RL, Peltonen GL, Binns SE, Shankaran M, Giordano GR, Hartley DA, Klochak AL, Lonac MC et al (2014) Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J 28:2705–2714

    Article  CAS  PubMed  Google Scholar 

  93. Zhao Z, Pu Y (2019) Lixisenatide enhances mitochondrial biogenesis and function through regulating the CREB/PGC-1α pathway. Biochem Biophys Res Commun 508:1120–1125

    Article  CAS  PubMed  Google Scholar 

  94. Carvalho C, Santos MS, Oliveira CR, Moreira PI (2015) Alzheimer’s disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers. Biochim Biophys Acta (BBA) - Mol Basis Dis 1852:1665–1675

    Article  CAS  Google Scholar 

  95. Sheng B, Wang X, Su B, Lee HG, Casadesus G, Perry G, Zhu X (2012) Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J Neurochem 120:419–429

    Article  CAS  PubMed  Google Scholar 

  96. Wang C-F, Song C-Y, Wang X et al (2019) Protective effects of melatonin on mitochondrial biogenesis and mitochondrial structure and function in the HEK293-APPswe cell model of Alzheimer’s disease. Eur Rev Med Pharmacol Sci 23:3542–3550

    PubMed  Google Scholar 

  97. Chakravorty A, Jetto CT, Manjithaya R (2019) Dysfunctional mitochondria and mitophagy as drivers of Alzheimer’s disease pathogenesis. Frontiers in Aging Neuroscience 11

  98. Silzer T, Barber R, Sun J, Pathak G, Johnson L, O’Bryant S, Phillips N (2019) Circulating mitochondrial DNA: new indices of type 2 diabetes-related cognitive impairment in Mexican Americans. PLoS One 14:e0213527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Agrawal R, Zhuang Y, Cummings BP, Stanhope KL, Graham JL, Havel PJ, Gomez-Pinilla F (2014) Deterioration of plasticity and metabolic homeostasis in the brain of the UCD-T2DM rat model of naturally occurring type-2 diabetes. Biochim Biophys Acta 1842:1313–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Palmeira CM, Rolo AP, Berthiaume J, Bjork JA, Wallace KB (2007) Hyperglycemia decreases mitochondrial function: the regulatory role of mitochondrial biogenesis. Toxicol Appl Pharmacol 225:214–220

    Article  CAS  PubMed  Google Scholar 

  101. Raza H, John A, Howarth FC (2015) Increased oxidative stress and mitochondrial dysfunction in zucker diabetic rat liver and brain. Cell Physiol Biochem 35:1241–1251

    Article  CAS  PubMed  Google Scholar 

  102. Monette MCE, Baird A, Jackson DL (2014) A meta-analysis of cognitive functioning in nondemented adults with type 2 diabetes mellitus. Can J Diabetes 38:401–408

    Article  PubMed  Google Scholar 

  103. Heyward FD, Walton RG, Carle MS, Coleman MA, Garvey WT, Sweatt JD (2012) Adult mice maintained on a high-fat diet exhibit object location memory deficits and reduced hippocampal SIRT1 gene expression. Neurobiol Learn Mem 98:25–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Peeri M, Amiri S (2015) Protective effects of exercise in metabolic disorders are mediated by inhibition of mitochondrial-derived sterile inflammation. Med Hypotheses 85:707–709

    Article  CAS  PubMed  Google Scholar 

  105. Twig G, Shirihai OS (2011) The interplay between mitochondrial dynamics and mitophagy. Antioxid Redox Signal 14:1939–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu L, Sakakibara K, Chen Q, Okamoto K (2014) Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res 24:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Twig G, Elorza A, Molina AJA, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Smirnova E, Griparic L, Shurland D-L, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhu J, Wang KZQ, Chu CT (2013) After the banquet. Autophagy 9:1663–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Beck JS, Mufson EJ, Counts SE (2016) Evidence for mitochondrial UPR gene activation in familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 13:610–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Park S, Choi S-G, Yoo S-M, Son JH, Jung YK (2014) Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy 10:1906–1920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Wu H, Wang Y, Li W, Chen H, du L, Liu D, Wang X, Xu T et al (2019) Deficiency of mitophagy receptor FUNDC1 impairs mitochondrial quality and aggravates dietary-induced obesity and metabolic syndrome. Autophagy 15:1882–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sato S, Furuya N (2018) Induction of PINK1/Parkin-mediated mitophagy. Methods Mol Biol 1759:9–17

    Article  CAS  PubMed  Google Scholar 

  114. Chen G, Kroemer G, Kepp O (2020) Mitophagy: an emerging role in aging and age-associated diseases. Front Cell Dev Biol 8:200

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ordureau A, Heo J-M, Duda DM, Paulo JA, Olszewski JL, Yanishevski D, Rinehart J, Schulman BA et al (2015) Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc Natl Acad Sci U S A 112:6637–6642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. McLelland G-L, Goiran T, Yi W, Dorval G, Chen CX, Lauinger ND, Krahn AI, Valimehr S et al (2018) Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. Elife 7. https://doi.org/10.7554/eLife.32866

  117. Bhansali S, Bhansali A, Walia R, Saikia UN, Dhawan V (2017) Alterations in mitochondrial oxidative stress and mitophagy in subjects with prediabetes and type 2 diabetes mellitus. Front Endocrinol 8:347

    Article  Google Scholar 

  118. Gustafsson ÅB, Dorn GW (2019) Evolving and expanding the roles of mitophagy as a homeostatic and pathogenic process. Physiol Rev 99:853–892

    Article  CAS  PubMed  Google Scholar 

  119. Hernández MG, Aguilar AG, Burillo J, Oca RG, Manca MA, Novials A, Alcarraz-Vizan G, Guillén C et al (2018) Pancreatic β cells overexpressing hIAPP impaired mitophagy and unbalanced mitochondrial dynamics. Cell Death Dis 9:481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Yang S, Xia C, Li S, du L, Zhang L, Zhou R (2014) Defective mitophagy driven by dysregulation of rheb and KIF5B contributes to mitochondrial reactive oxygen species (ROS)-induced nod-like receptor 3 (NLRP3) dependent proinflammatory response and aggravates lipotoxicity. Redox Biol 3:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Seillier M, Pouyet L, N’Guessan P et al (2015) Defects in mitophagy promote redox-driven metabolic syndrome in the absence of TP 53 INP 1. EMBO Molecular Medicine 7:802–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gundersen AE, Kugler BA, McDonald PM et al (2020) Altered mitochondrial network morphology and regulatory proteins in mitochondrial quality control in myotubes from severely obese humans with or without type 2 diabetes. Appl Physiol Nutr Metab 45:283–293

    Article  CAS  PubMed  Google Scholar 

  123. Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM et al (2019) Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22:401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ, Bohr VA, Fang EF (2017) Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci 40:151–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Reddy PH, Oliver DM (2019) Amyloid beta and phosphorylated Tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells 8:8. https://doi.org/10.3390/cells8050488

    Article  CAS  Google Scholar 

  126. Castellazzi M, Patergnani S, Donadio M, et al (2019) Autophagy and mitophagy biomarkers are reduced in sera of patients with Alzheimer’s disease and mild cognitive impairment. Scientific Reports 9

  127. Caberlotto L, Phuong Nguyen T, Lauria M et al (2019) Cross-disease analysis of Alzheimer’s disease and type-2 diabetes highlights the role of autophagy in the pathophysiology of two highly comorbid diseases. Sci Rep 9:3965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Khang R, Park C, Shin J-H (2015) Dysregulation of parkin in the substantia nigra of db/db and high-fat diet mice. Neuroscience 294:182–192

    Article  CAS  PubMed  Google Scholar 

  129. Jin H, Zhu Y, Li Y, Ding X, Ma W, Han X, Wang B (2019) BDNF-mediated mitophagy alleviates high-glucose-induced brain microvascular endothelial cell injury. Apoptosis 24:511–528

    Article  CAS  PubMed  Google Scholar 

  130. Maffioletti E, Tardito D, Gennarelli M, Bocchio-Chiavetto L (2014) Micro spies from the brain to the periphery: new clues from studies on microRNAs in neuropsychiatric disorders. Frontiers in Cellular Neuroscience 8

  131. Reddy PH, Tonk S, Kumar S, Vijayan M, Kandimalla R, Kuruva CS, Reddy AP (2017) A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer’s disease. Biochem Biophys Res Commun 483:1156–1165

    Article  CAS  PubMed  Google Scholar 

  132. Bao B, Ali S, Kong D, Sarkar SH, Wang Z, Banerjee S, Aboukameel A, Padhye S et al (2011) Anti-tumor activity of a novel compound-CDF is mediated by regulating miR-21, miR-200, and PTEN in pancreatic cancer. PLoS One 6:e17850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nicolas FE, Lopez-Martinez AF (2010) MicroRNAs in human diseases. Recent Patents on DNA & Gene Sequences 4:142–154

    Article  CAS  Google Scholar 

  134. Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26:611–623

    Article  CAS  PubMed  Google Scholar 

  135. Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E (2008) Deadenylation is a widespread effect of miRNA regulation. RNA 15:21–32

    Article  PubMed  CAS  Google Scholar 

  136. John A, Kubosumi A, Reddy PH (2020) Mitochondrial MicroRNAs in aging and neurodegenerative diseases. Cells 9 https://doi.org/10.3390/cells9061345

  137. Li X, Wang Z, Tan L, Wang Y, Lu C, Chen R, Zhang S, Gao Y et al (2017) Correcting miR92a-vGAT-mediated GABAergic dysfunctions rescues human Tau-induced anxiety in mice. Mol Ther 25:140–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Weinberg RB, Mufson EJ, Counts SE (2015) Evidence for a neuroprotective microRNA pathway in amnestic mild cognitive impairment. Front Neurosci 9:430

    Article  PubMed  PubMed Central  Google Scholar 

  139. Dehwah MAS, Xu A, Huang Q (2012) MicroRNAs and type 2 diabetes/obesity. Journal of Genetics and Genomics 39:11–18

    Article  CAS  PubMed  Google Scholar 

  140. Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, Ullian EM (2008) Conditional loss of dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28:4322–4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cuellar TL, Davis TH, Nelson PT, Loeb GB, Harfe BD, Ullian E, McManus MT (2008) Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proc Natl Acad Sci 105:5614–5619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ma X, Liu L, Meng J (2017) MicroRNA-125b promotes neurons cell apoptosis and Tau phosphorylation in Alzheimer’s disease. Neurosci Lett 661:57–62

    Article  CAS  PubMed  Google Scholar 

  143. Thounaojam MC, Jadeja RN, Warren M, Powell FL, Raju R, Gutsaeva D, Khurana S, Martin PM et al (2019) MicroRNA-34a (miR-34a) Mediates retinal endothelial cell premature senescence through mitochondrial dysfunction and loss of antioxidant activities. Antioxidants (Basel) 8. https://doi.org/10.3390/antiox8090328

  144. Docrat TF, Nagiah S, Naicker N, Baijnath S, Singh S, Chuturgoon AA (2020) The protective effect of metformin on mitochondrial dysfunction and endoplasmic reticulum stress in diabetic mice brain. Eur J Pharmacol 875:173059

    Article  CAS  PubMed  Google Scholar 

  145. Xie Y, Chu A, Feng Y, Chen L, Shao Y, Luo Q, Deng X, Wu M et al (2018) MicroRNA-146a: A comprehensive indicator of inflammation and oxidative stress status induced in the brain of chronic T2DM rats. Front Pharmacol 9:478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Li H-H, Lin S-L, Huang C-N, Lu FJ, Chiu PY, Huang WN, Lai TJ, Lin CL (2016) miR-302 attenuates amyloid-β-induced neurotoxicity through activation of Akt signaling. J Alzheimers Dis 50:1083–1098

    Article  CAS  PubMed  Google Scholar 

  147. Sørensen SS, Nygaard A-B, Christensen T (2016) miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia—an exploratory study. Translational Neurodegeneration 5

  148. Sun L-L, Jiang B-G, Li W-T, Zou JJ, Shi YQ, Liu ZM (2011) MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 91:94–100

    Article  CAS  PubMed  Google Scholar 

  149. Hébert SS, Papadopoulou AS, Smith P, Galas MC, Planel E, Silahtaroglu AN, Sergeant N, Buée L et al (2010) Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 19:3959–3969

    Article  PubMed  CAS  Google Scholar 

  150. Sarkar S, Engler-Chiurazzi EB, Cavendish JZ, Povroznik JM, Russell AE, Quintana DD, Mathers PH, Simpkins JW (2019) Over-expression of miR-34a induces rapid cognitive impairment and Alzheimer’s disease-like pathology. Brain Res 1721:146327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shen Y, Xu H, Pan X, et al (2017) miR-34a and miR-125b are upregulated in peripheral blood mononuclear cells from patients with type 2 diabetes mellitus. Experimental and Therapeutic Medicine

  152. Sarkar S, Jun S, Rellick S, Quintana DD, Cavendish JZ, Simpkins JW (2016) Expression of microRNA-34a in Alzheimer’s disease brain targets genes linked to synaptic plasticity, energy metabolism, and resting state network activity. Brain Res 1646:139–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kim W, Noh H, Lee Y, Jeon J, Shanmugavadivu A, McPhie DL, Kim KS, Cohen BM et al (2016) MiR-126 regulates growth factor activities and vulnerability to toxic insult in neurons. Mol Neurobiol 53:95–108

    Article  CAS  PubMed  Google Scholar 

  154. Fang S, Ma X, Guo S, Lu J (2017) MicroRNA-126 inhibits cell viability and invasion in a diabetic retinopathy model via targeting IRS-1. Oncol Lett 14:4311–4318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Fan D, Yang S, Han Y, Zhang R, Yang L (2020) Isoflurane-induced expression of miR-140-5p aggravates neurotoxicity in diabetic rats by targeting SNX12. J Toxicol Sci 45:69–76

    Article  CAS  PubMed  Google Scholar 

  156. Kalani A, Chaturvedi P, Maldonado C, Bauer P, Joshua IG, Tyagi SC, Tyagi N (2017) Dementia-like pathology in type-2 diabetes: a novel microRNA mechanism. Mol Cell Neurosci 80:58–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lin X, Qin Y, Jia J, Lin T, Lin X, Chen L, Zeng H, Han Y et al (2016) MiR-155 enhances insulin sensitivity by coordinated regulation of multiple genes in mice. PLoS Genet 12:e1006308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Kou X, Chen D, Chen N (2020) The regulation of microRNAs in Alzheimer’s disease. Front Neurol 11:288

    Article  PubMed  PubMed Central  Google Scholar 

  159. Rodriguez-Ortiz CJ, Prieto GA, Martini AC, et al (2020) miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer’s disease. Aging Cell 19

  160. Du X, Yang Y, Xu C et al (2017) Upregulation of miR-181a impairs hepatic glucose and lipid homeostasis. Oncotarget 8:91362–91378

    Article  PubMed  PubMed Central  Google Scholar 

  161. Esguerra JLS, Bolmeson C, Cilio CM, Eliasson L (2011) Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One 6:e18613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hadar A, Milanesi E, Walczak M, Puzianowska-Kuźnicka M, Kuźnicki J, Squassina A, Niola P, Chillotti C et al (2018) SIRT1, miR-132 and miR-212 link human longevity to Alzheimer’s disease. Sci Rep 8:8465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Thangavel N, Al Bratty M, Akhtar Javed S et al (2017) Targeting peroxisome proliferator-activated receptors using thiazolidinediones: strategy for design of novel antidiabetic drugs. Int J Med Chem 2017:1069718

    PubMed  PubMed Central  Google Scholar 

  164. Sato T, Hanyu H, Hirao K, Kanetaka H, Sakurai H, Iwamoto T (2011) Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging 32:1626–1633

    Article  CAS  PubMed  Google Scholar 

  165. Tzimopoulou S, Cunningham VJ, Nichols TE et al (2010) A multi-center randomized proof-of-concept clinical trial applying [18F]FDG-PET for evaluation of metabolic therapy with rosiglitazone XR in mild to moderate Alzheimer’s disease. J Alzheimers Dis 22:1241–1256

    Article  CAS  PubMed  Google Scholar 

  166. Koenig AM (2016) P1-031: effects of the insulin sensitizer metformin on Alzheimer’s disease biomarkers: results of a brief crossover pilot study. Alzheimers Dement 12:P413–P413

    Article  Google Scholar 

  167. Wang Y, An H, Liu T et al (2019) Metformin improves mitochondrial respiratory activity through activation of AMPK. Cell Rep 29:1511–1523.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sacks J, Mulya A, Fealy CE et al (2018) Effect of metformin on mitochondrial pathways in human skeletal muscle cells. Diabetes 67:157–OR

    Article  Google Scholar 

  169. Isik AT, Soysal P, Yay A, Usarel C (2017) The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer’s disease. Diabetes Res Clin Pract 123:192–198

    Article  CAS  PubMed  Google Scholar 

  170. Prakash S, Rai U, Uniyal A, Tiwari V, Singh S (2020) Sitagliptin mitigates oxidative stress and up-regulates mitochondrial biogenesis markers in Brown adipose tissues of high-fat diet fed obese mice through AMPK phosphorylation. Obesity Medicine 19:100265

    Article  Google Scholar 

  171. Panagaki T, Michael M, Hölscher C (2017) Liraglutide restores chronic ER stress, autophagy impairments and apoptotic signalling in SH-SY5Y cells. Sci Rep 7:16158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Wang R-F, Xue G-F, Hölscher C, Tian MJ, Feng P, Zheng JY, Li DF (2018) Post-treatment with the GLP-1 analogue liraglutide alleviate chronic inflammation and mitochondrial stress induced by Status epilepticus. Epilepsy Res 142:45–52

    Article  CAS  PubMed  Google Scholar 

  173. Moreira P, Santos M, Sena C et al (2005) CoQ10 therapy attenuates amyloid β-peptide toxicity in brain mitochondria isolated from aged diabetic rats. Exp Neurol 196:112–119

    Article  CAS  PubMed  Google Scholar 

  174. Hsu C-C, Wahlqvist ML, Lee M-S, Tsai H-N (2011) Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. J Alzheimers Dis 24:485–493

    Article  CAS  PubMed  Google Scholar 

  175. Cardoso S, Santos MS, Seiça R, Moreira PI (2010) Cortical and hippocampal mitochondria bioenergetics and oxidative status during hyperglycemia and/or insulin-induced hypoglycemia. Biochim Biophys Acta (BBA) - Mol Basis Dis 1802:942–951

    Article  CAS  Google Scholar 

  176. Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705

    Article  CAS  PubMed  Google Scholar 

  177. Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Plácido A, Santos MS et al (2013) Crosstalk between diabetes and brain: glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochim Biophys Acta 1832:527–541

    Article  CAS  PubMed  Google Scholar 

  178. Park K-A, Jin Z, Lee JY et al (2020) Long-lasting exendin-4 fusion protein improves memory deficits in high-fat diet/streptozotocin-induced diabetic mice. Pharmaceutics 12. https://doi.org/10.3390/pharmaceutics12020159

  179. Duarte AI, Candeias E, Alves IN, Mena D, Silva DF, Machado NJ, Campos EJ, Santos MS et al (2020) Liraglutide protects against brain amyloid-β1–42 accumulation in female mice with early Alzheimer’s disease-like pathology by partially rescuing oxidative/nitrosative stress and inflammation. Int J Mol Sci 21:1746

    Article  CAS  PubMed Central  Google Scholar 

  180. Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP, Szeto HH, Park B et al (2010) Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J Alzheimers Dis 20(Suppl 2):S609–S631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Escribano-Lopez I, Bañuls C, Diaz-Morales N, Iannantuoni F, Rovira-Llopis S, Gomis R, Rocha M, Hernandez-Mijares A et al (2019) The mitochondria-targeted antioxidant MitoQ modulates mitochondrial function and endoplasmic reticulum stress in pancreatic β cells exposed to hyperglycaemia. Cell Physiol Biochem 52:186–197

    Article  CAS  PubMed  Google Scholar 

  182. Escribano-López I, de Marañon AM, Iannantuoni F, et al (2019) The mitochondrial antioxidant SS-31 modulates oxidative stress, endoplasmic reticulum stress, and autophagy in type 2 diabetes. J Clin Med Res 8 https://doi.org/10.3390/jcm8091322

  183. Ola MS, Aleisa AM, Al-Rejaie SS et al (2014) Flavonoid, morin inhibits oxidative stress, inflammation and enhances neurotrophic support in the brain of streptozotocin-induced diabetic rats. Neurol Sci 35:1003–1008

    Article  PubMed  Google Scholar 

  184. Grizzanti J, Corrigan R, Casadesus G (2018) Neuroprotective effects of amylin analogues on Alzheimer’s disease pathogenesis and cognition. J Alzheimers Dis 66:11–23

    Article  PubMed  PubMed Central  Google Scholar 

  185. Adler BL, Yarchoan M, Hwang HM, Louneva N, Blair JA, Palm R, Smith MA, Lee HG et al (2014) Neuroprotective effects of the amylin analogue pramlintide on Alzheimer’s disease pathogenesis and cognition. Neurobiol Aging 35:793–801

    Article  CAS  PubMed  Google Scholar 

  186. Abramova NA, Cassarino DS, Khan SM, Painter TW, Bennett JP (2002) Inhibition by R( ) or S(-) pramipexole of caspase activation and cell death induced by methylpyridinium ion or beta amyloid peptide in SH-SY5Y neuroblastoma. J Neurosci Res 67:494–500

    Article  PubMed  CAS  Google Scholar 

  187. Harashima S-I, Nishimura A, Osugi T, Wang Y, Liu Y, Takayama H, Inagaki N (2016) Restless legs syndrome in patients with type 2 diabetes: effectiveness of pramipexole therapy. BMJ Support Palliat Care 6:89–93

    Article  PubMed  Google Scholar 

  188. Sanz-Blasco S, Valero RA, Rodríguez-Crespo I, Villalobos C, Núñez L (2008) Mitochondrial Ca2 overload underlies Aβ oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One 3:e2718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Bellucci PN, González Bagnes MF, Di Girolamo G, González CD (2017) Potential effects of nonsteroidal anti-inflammatory drugs in the prevention and treatment of type 2 diabetes mellitus. J Pharm Pract 30:549–556

    Article  PubMed  Google Scholar 

  190. Ahn H, Kang SG, Yoon S-I, Ko HJ, Kim PH, Hong EJ, An BS, Lee E et al (2017) Methylene blue inhibits NLRP3, NLRC4, AIM2, and non-canonical inflammasome activation. Sci Rep 7:12409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Grohm J, Kim S-W, Mamrak U, Tobaben S, Cassidy-Stone A, Nunnari J, Plesnila N, Culmsee C (2012) Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ 19:1446–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, Kurth MJ, Shaw JT et al (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14:193–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Asalla S, Girada SB, Kuna RS, Chowdhury D, Kandagatla B, Oruganti S, Bhadra U, Bhadra MP et al (2016) Restoring mitochondrial function: a small molecule-mediated approach to enhance glucose stimulated insulin secretion in cholesterol accumulated pancreatic beta cells. Sci Rep 6:27513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wang D, Wang J, Bonamy GMC, Meeusen S, Brusch RG, Turk C, Yang P, Schultz PG (2012) A small molecule promotes mitochondrial fusion in mammalian cells. Angew Chem Int Ed Eng 51:9302–9305

    Article  CAS  Google Scholar 

  195. Moreira PI (2018) Sweet mitochondria: a shortcut to Alzheimer’s disease. J Alzheimers Dis 62:1391–1401

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Availability of Data and Materials

The datasets supporting the conclusions of this article are included within the article.

Funding

We acknowledge the Council of Scientific & Industrial Research (CSIR), India and Science and Engineering Research Board (SERB), India for funding this work. SP acknowledges a junior research fellowship from UGC

Author information

Authors and Affiliations

Authors

Contributions

BK conceived the original idea and designed the outlines of the study. SP and DS wrote the draft of the manuscript. SP and DS prepared the figures for the manuscript. SP and DS performed the literature review. SP aided in revising the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Binukumar BK.

Ethics declarations

Consent to Participate

Not applicable.

Consent to Publish

NA.

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, S., Saha, D. & BK, B. Mitochondrial Dysfunction and Mitophagy Closely Cooperate in Neurological Deficits Associated with Alzheimer’s Disease and Type 2 Diabetes. Mol Neurobiol 58, 3677–3691 (2021). https://doi.org/10.1007/s12035-021-02365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02365-2

Keywords

Navigation