Skip to main content

Advertisement

Log in

Alzheimer’s Disease and Type 2 Diabetes: Multiple Mechanisms Contribute to Interactions

  • Pathogenesis of Type 2 Diabetes and Insulin Resistance (RM Watanabe, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Obesity, metabolic syndrome, and type 2 diabetes (T2D) are related disorders with widespread deleterious effects throughout the body. One important target of damage is the brain. Persons with metabolic disorders are at significantly increased risk for cognitive decline and the development of vascular dementia and Alzheimer’s disease. Our review of available evidence from epidemiologic, clinical, and basic research suggests that neural dysfunction from T2D-related disease results from several underlying mechanisms, including metabolic, inflammatory, vascular, and oxidative changes. The relationships between T2D and neural dysfunction are regulated by several modifiers. We emphasize 2 such modifiers, the genetic risk factor apolipoprotein E and an age-related endocrine change, low testosterone. Both factors are independent risk factors for Alzheimer’s disease that may also cooperatively regulate pathologic interactions between T2D and dementia. Continued elucidation of the links between metabolic disorders and neural dysfunction promises to foster the development of effective therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Zitzmann M. Testosterone deficiency, insulin resistance and the metabolic syndrome. Nat Rev Endocrinol. 2009;5:673–81.

    CAS  PubMed  Google Scholar 

  2. Hebert LE, Scherr PA, Bienias JL, et al. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol. 2003;60:1119–22.

    PubMed  Google Scholar 

  3. Raffaitin C, Feart C, Le Goff M, et al. Metabolic syndrome and cognitive decline in French elders: the Three-City Study. Neurology. 2011;76:518–25.

    CAS  PubMed  Google Scholar 

  4. Yaffe K, Haan M, Blackwell T, et al. Metabolic syndrome and cognitive decline in elderly Latinos: findings from the Sacramento Area Latino Study of Aging study. J Am Geriatr Soc. 2007;55:758–62.

    PubMed  Google Scholar 

  5. McEvoy LK, Laughlin GA, Barrett-Connor E, et al. Metabolic syndrome and 16-year cognitive decline in community-dwelling older adults. Ann Epidemiol. 2012;22:310–7.

    PubMed Central  PubMed  Google Scholar 

  6. Yaffe K, Blackwell T, Whitmer RA, et al. Glycosylated hemoglobin level and development of mild cognitive impairment or dementia in older women. J Nutr Health Aging. 2006;10:293–5.

    CAS  PubMed  Google Scholar 

  7. Stolk RP, Breteler MM, Ott A, et al. Insulin and cognitive function in an elderly population. The Rotterdam Study. Diabetes Care. 1997;20:792–5.

    CAS  PubMed  Google Scholar 

  8. Wolf PA, Beiser A, Elias MF, et al. Relation of obesity to cognitive function: importance of central obesity and synergistic influence of concomitant hypertension. The Framingham Heart Study. Curr Alzheimer Res. 2007;4:111–6.

    CAS  PubMed  Google Scholar 

  9. Gunstad J, Lhotsky A, Wendell CR, et al. Longitudinal examination of obesity and cognitive function: results from the Baltimore longitudinal study of aging. Neuroepidemiology. 2010;34:222–9.

    PubMed Central  PubMed  Google Scholar 

  10. van den Berg E, Biessels GJ, de Craen AJ, et al. The metabolic syndrome is associated with decelerated cognitive decline in the oldest old. Neurology. 2007;69:979–85.

    PubMed  Google Scholar 

  11. Xia W, Wang S, Sun Z, et al. Altered baseline brain activity in type 2 diabetes: a resting-state fMRI study. Psychoneuroendocrinology. 2013;38:2493–501.

    Google Scholar 

  12. Moran C, Phan TG, Chen J, et al. Brain atrophy in type 2 diabetes: regional distribution and influence on cognition. Diabetes Care. 2013;36:4036–42.

    Google Scholar 

  13. Manschot SM, Brands AM, van der Grond J, et al. Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes. Diabetes. 2006;55:1106–13.

    CAS  PubMed  Google Scholar 

  14. Luchsinger JA, Reitz C, Patel B, et al. Relation of diabetes to mild cognitive impairment. Arch Neurol. 2007;64:570–5.

    PubMed  Google Scholar 

  15. Arvanitakis Z, Wilson RS, Li Y, et al. Diabetes and function in different cognitive systems in older individuals without dementia. Diabetes Care. 2006;29:560–5.

    PubMed  Google Scholar 

  16. van den Berg E, Reijmer YD, de Bresser J, et al. A 4 year follow-up study of cognitive functioning in patients with type 2 diabetes mellitus. Diabetologia. 2010;53:58–65.

    PubMed Central  PubMed  Google Scholar 

  17. Reijmer YD, van den Berg E, de Bresser J, et al. Accelerated cognitive decline in patients with type 2 diabetes: MRI correlates and risk factors. Diabetes Metab Res Rev. 2011;27:195–202.

    PubMed  Google Scholar 

  18. Sullivan MD, Katon WJ, Lovato LC, et al. Association of depression with accelerated cognitive decline among patients with type 2 diabetes in the ACCORD-MIND Trial. JAMA Psychiatry. 2013;70:1041–7.

    Google Scholar 

  19. Ott A, Stolk RP, van Harskamp F, et al. Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology. 1999;53:1937–42.

    CAS  PubMed  Google Scholar 

  20. Arvanitakis Z, Wilson RS, Bienias JL, et al. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol. 2004;61:661–6.

    PubMed  Google Scholar 

  21. Luchsinger JA, Tang MX, Shea S, Mayeux R. Hyperinsulinemia and risk of Alzheimer disease. Neurology. 2004;63:1187–92.

    PubMed  Google Scholar 

  22. Hassing LB, Johansson B, Nilsson SE, et al. Diabetes mellitus is a risk factor for vascular dementia, but not for Alzheimer's disease: a population-based study of the oldest old. Int Psychogeriatr. 2002;14:239–48.

    PubMed  Google Scholar 

  23. Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J. 2012;42:484–91.

    CAS  PubMed  Google Scholar 

  24. Whitmer RA, Gustafson DR, Barrett-Connor E, et al. Central obesity and increased risk of dementia more than three decades later. Neurology. 2008;71:1057–64.

    CAS  PubMed  Google Scholar 

  25. Anstey KJ, Cherbuin N, Budge M, Young J. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev. 2011;12:e426–37.

    CAS  PubMed  Google Scholar 

  26. MacKnight C, Rockwood K, Awalt E, McDowell I. Diabetes mellitus and the risk of dementia, Alzheimer's disease and vascular cognitive impairment in the Canadian Study of Health and Aging. Dement Geriatr Cogn Disord. 2002;14:77–83.

    PubMed  Google Scholar 

  27. van Harten B, Oosterman JM. Potter van Loon BJ, et al. Brain lesions on MRI in elderly patients with type 2 diabetes mellitus. Eur Neurol. 2007;57:70–4.

    PubMed  Google Scholar 

  28. Hsu JL, Chen YL, Leu JG, et al. Microstructural white matter abnormalities in type 2 diabetes mellitus: a diffusion tensor imaging study. Neuroimage. 2012;59:1098–105.

    Google Scholar 

  29. Tiehuis AM, van der Graaf Y, Visseren FL, et al. Diabetes increases atrophy and vascular lesions on brain MRI in patients with symptomatic arterial disease. Stroke. 2008;39:1600–3.

    PubMed  Google Scholar 

  30. Li ZG, Zhang W, Sima AA. Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes. 2007;56:1817–24.

    CAS  PubMed  Google Scholar 

  31. Jung HJ, Kim YJ, Eggert S, et al. Age-dependent increases in tau phosphorylation in the brains of type 2 diabetic rats correlate with a reduced expression of p62. Exp Neurol. 2013;248C:441–50.

    Google Scholar 

  32. Kim B, Backus C, Oh S, et al. Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology. 2009;150:5294–301.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Planel E, Tatebayashi Y, Miyasaka T, et al. Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J Neurosci. 2007;27:13635–48.

    CAS  PubMed  Google Scholar 

  34. Biessels GJ, Kamal A, Urban IJ, et al. Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: effects of insulin treatment. Brain Res. 1998;800:125–35.

    CAS  PubMed  Google Scholar 

  35. Jolivalt CG, Lee CA, Beiswenger KK, et al. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin. J Neurosci Res. 2008;86:3265–74.

    CAS  PubMed  Google Scholar 

  36. Zhao L, Teter B, Morihara T, et al. Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer's disease intervention. J Neurosci. 2004;24:11120–6.

    CAS  PubMed  Google Scholar 

  37. Chesneau V, Vekrellis K, Rosner MR, Selkoe DJ. Purified recombinant insulin-degrading enzyme degrades amyloid beta-protein but does not promote its oligomerization. Biochem J. 2000;351(Pt 2):509–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta amyloid precursor protein intacellular domain in vivo. Proc Natl Acad Sci U S A. 2003;100:4162–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Ho L, Qin W, Pompl PN, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. FASEB J. 2004;18:902–4.

    CAS  PubMed  Google Scholar 

  40. Cao D, Lu H, Lewis TL, Li L. Intake of sucrose-sweetened water induces insulin resistance and exacerbates memory deficits and amyloidosis in a transgenic mouse model of Alzheimer disease. J Biol Chem. 2007;282:36275–82.

    CAS  PubMed  Google Scholar 

  41. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev. 2000;24:855–72.

    CAS  PubMed  Google Scholar 

  42. Frolich L, Blum-Degen D, Bernstein HG, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease. J Neural Transm. 1998;105:423–38.

    CAS  PubMed  Google Scholar 

  43. Steen E, Terry BM, Rivera EJ, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease–is this type 3 diabetes? J Alzheimers Dis. 2005;7:63–80.

    CAS  PubMed  Google Scholar 

  44. Farris W, Mansourian S, Leissring MA, et al. Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. Am J Pathol. 2004;164:1425–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Bennett RG, Hamel FG, Duckworth WC. An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures. Diabetes. 2003;52:2315–20.

    CAS  PubMed  Google Scholar 

  46. Shiiki T, Ohtsuki S, Kurihara A, et al. Brain insulin impairs amyloid-beta (1-40) clearance from the brain. J Neurosci. 2004;24:9632–7.

    CAS  PubMed  Google Scholar 

  47. Qiu WQ, Walsh DM, Ye Z, et al. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem. 1998;273:32730–8.

    CAS  PubMed  Google Scholar 

  48. Luchsinger JA, Palmas W, Teresi JA, et al. Improved diabetes control in the elderly delays global cognitive decline. J Nutr Health Aging. 2011;15:445–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Watson GS, Cholerton BA, Reger MA, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry. 2005;13:950–8.

    PubMed  Google Scholar 

  50. Chen Y, Zhou K, Wang R, et al. Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer's amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A. 2009;106:3907–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Craft S, Baker LD, Montine TJ, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69:29–38. This initial report from a clinical trial provides evidence that, even in the absence of diabetes, insulin-based therapy may provide cognitive benefits at early stages of AD.

    PubMed Central  PubMed  Google Scholar 

  52. Searcy JL, Phelps JT, Pancani T, et al. Long-term pioglitazone treatment improves learning and attenuates pathologic markers in a mouse model of Alzheimer's disease. J Alzheimers Dis. 2012;30:943–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Long-Smith CM, Manning S, McClean PL, et al. The diabetes drug liraglutide ameliorates aberrant insulin receptor localisation and signalling in parallel with decreasing both amyloid-beta plaque and glial pathology in a mouse model of Alzheimer's disease. Neuromolecular Med. 2013;15:102–14.

    CAS  PubMed  Google Scholar 

  54. Eriksson A, Attvall S, Bonnier M, et al. Short-term effects of metformin in type 2 diabetes. Diabetes Obes Metab. 2007;9:330–6.

    CAS  PubMed  Google Scholar 

  55. Wang M, Tong JH, Zhu G, et al. Metformin for treatment of antipsychotic-induced weight gain: a randomized, placebo-controlled study. Schizophr Res. 2012;138:54–7.

    PubMed  Google Scholar 

  56. Kalariya NM, Shoeb M, Ansari NH, et al. Antidiabetic drug metformin suppresses endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci. 2012;53:3431–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Barron AM, Rosario ER, Elteriefi R, Pike CJ. Sex-specific effects of high fat diet on indices of metabolic syndrome in 3xTg-AD mice: implications for Alzheimer's disease. PLoS One. 2013;8:e78554.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Murakami K, Yokoyama S, Murata N, et al. Insulin receptor mutation results in insulin resistance and hyperinsulinemia but does not exacerbate Alzheimer's-like phenotypes in mice. Biochem Biophys Res Commun. 2011;409:34–9.

    Google Scholar 

  59. Freude S, Hettich MM, Schumann C, et al. Neuron.al IGF-1 resistance reduces Abeta accumulation and protects against premature death in a model of Alzheimer's disease. FASEB J. 2009;23:3315–24.

    CAS  PubMed  Google Scholar 

  60. Killick R, Scales G, Leroy K, et al. Deletion of Irs2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice. Biochem Biophys Res Commun. 2009;386:257–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121:2111–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Lee YH, Pratley RE. The evolving role of inflammation in obesity and the metabolic syndrome. Curr Diabetes Rep. 2005;5:70–5.

    CAS  Google Scholar 

  63. Deans KA, Sattar N. "Anti-inflammatory" drugs and their effects on type 2 diabetes. Diabetes Technol Ther. 2006;8:18–27.

    CAS  PubMed  Google Scholar 

  64. Yaffe K, Kanaya A, Lindquist K, et al. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA. 2004;292:2237–42.

    CAS  PubMed  Google Scholar 

  65. Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003;112:1785–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Zhang X, Dong F, Ren J, et al. High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp Neurol. 2005;191:318–25.

    CAS  PubMed  Google Scholar 

  67. Thaler JP, Yi CX, Schur EA, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122:153–62. This initial report from a clinical trial provides evidence that, even in the absence of diabetes, insulin-based therapy may provide cognitive benefits at early stages of AD.

  68. Viscogliosi G, Marigliano V. Alzheimer's disease: how far have we progressed? Lessons learned from diabetes mellitus, metabolic syndrome, and inflammation. J Am Geriatr Soc. 2013;61:845–6.

    PubMed  Google Scholar 

  69. Griffin WS, Stanley LC, Ling C, et al. Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A. 1989;86:7611–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Motta M, Imbesi R, Di Rosa M, et al. Altered plasma cytokine levels in Alzheimer's disease: correlation with the disease progression. Immunol Lett. 2007;114:46–51.

    CAS  PubMed  Google Scholar 

  71. Matsuoka Y, Picciano M, Malester B, et al. Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer's disease. Am J Pathol. 2001;158:1345–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Benzing WC, Wujek JR, Ward EK, et al. Evidence for glial-mediated inflammation in aged APP(SW) transgenic mice. Neurobiol Aging. 1999;20:581–9.

    CAS  PubMed  Google Scholar 

  73. Tanzi RE. The genetics of Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2:

  74. Cote S, Carmichael PH, Verreault R, et al. Nonsteroidal anti-inflammatory drug use and the risk of cognitive impairment and Alzheimer's disease. Alzheimers Dement. 2012;8:219–26.

    CAS  PubMed  Google Scholar 

  75. Rodrigue KM. Contribution of cerebrovascular health to the diagnosis of Alzheimer disease. JAMA Neurol. 2013;70:438–9.

    PubMed  Google Scholar 

  76. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci. 2011;12:723–38.

    CAS  PubMed  Google Scholar 

  77. Tamaki C, Ohtsuki S, Terasaki T. Insulin facilitates the hepatic clearance of plasma amyloid beta-peptide (1 40) by intracellular translocation of low-density lipoprotein receptor-related protein 1 (LRP-1) to the plasma membrane in hepatocytes. Mol Pharmacol. 2007;72:850–5.

    CAS  PubMed  Google Scholar 

  78. Deane R, Wu Z, Sagare A, et al. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron. 2004;43:333–44.

    CAS  PubMed  Google Scholar 

  79. Terrand J, Bruban V, Zhou L, et al. LRP1 controls intracellular cholesterol storage and fatty acid synthesis through modulation of Wnt signaling. J Biol Chem. 2009;284:381–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Liu W, Singh R, Choi CS, et al. Low density lipoprotein (LDL) receptor-related protein 6 (LRP6) regulates body fat and glucose homeostasis by modulating nutrient sensing pathways and mitochondrial energy expenditure. J Biol Chem. 2012;287:7213–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Xi YD, Li XY, Ding J, et al. Soy isoflavone alleviates Abeta1-42-induced impairment of learning and memory ability through the regulation of RAGE/LRP-1 in neuronal and vascular tissue. Curr Neurovasc Res. 2013;10:144–56.

    CAS  PubMed  Google Scholar 

  82. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004;63:582–92.

    CAS  PubMed  Google Scholar 

  83. Schmidt AM, Yan SD, Yan SF, Stern DM. The biology of the receptor for advanced glycation end products and its ligands. Biochim Biophys Acta. 2000;1498:99–111.

    CAS  PubMed  Google Scholar 

  84. Yan SD, Zhu H, Zhu A, et al. Receptor-dependent cell stress and amyloid accumulation in systemic amyloidosis. Nat Med. 2000;6:643–51.

    CAS  PubMed  Google Scholar 

  85. Yan SD, Chen X, Fu J, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature. 1996;382:685–91.

    CAS  PubMed  Google Scholar 

  86. Lue LF, Walker DG, Brachova L, et al. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp Neurol. 2001;171:29–45.

    CAS  PubMed  Google Scholar 

  87. Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 2003;9:907–13.

    CAS  PubMed  Google Scholar 

  88. Stern DM, Yan SD, Yan SF, Schmidt AM. Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res Rev. 2002;1:1–15.

    CAS  PubMed  Google Scholar 

  89. Schmidt AM, Stern DM. Receptor for age (RAGE) is a gene within the major histocompatibility class III region: implications for host response mechanisms in homeostasis and chronic disease. Front Biosci. 2001;6:D1151–60.

    CAS  PubMed  Google Scholar 

  90. Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology. 1993;43:1467–72.

    CAS  PubMed  Google Scholar 

  91. Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988;240:622–30.

    CAS  PubMed  Google Scholar 

  92. Schmechel DE, Saunders AM, Strittmatter WJ, et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A. 1993;90:9649–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Irie F, Fitzpatrick AL, Lopez OL, et al. Enhanced risk for Alzheimer disease in persons with type 2 diabetes and APOE epsilon4: the Cardiovascular Health Study Cognition Study. Arch Neurol. 2008;65:89–93.

    PubMed  Google Scholar 

  94. Peila R, Rodriguez BL, Launer LJ. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu-Asia Aging Study. Diabetes. 2002;51:1256–62.

    CAS  PubMed  Google Scholar 

  95. Hanson AJ, Bayer-Carter JL, Green PS, et al. Effect of apolipoprotein e genotype and diet on apolipoprotein e lipidation and amyloid peptides: randomized clinical trial. JAMA Neurol. 2013;70:972–80.

    PubMed  Google Scholar 

  96. Cook DG, Leverenz JB, McMillan PJ, et al. Reduced hippocampal insulin-degrading enzyme in late-onset Alzheimer's disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol. 2003;162:313–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Craft S, Peskind E, Schwartz MW, et al. Cerebrospinal fluid and plasma insulin levels in Alzheimer's disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology. 1998;50:164–8.

    CAS  PubMed  Google Scholar 

  98. Craft S, Asthana S, Schellenberg G, et al. Insulin effects on glucose metabolism, memory, and plasma amyloid precursor protein in Alzheimer's disease differ according to apolipoprotein-E genotype. Ann N Y Acad Sci. 2000;903:222–8.

    CAS  PubMed  Google Scholar 

  99. Reger MA, Watson GS, Green PS, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis. 2008;13:323–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Morley JE. Andropause, testosterone therapy, and quality of life in aging men. Cleve Clin J Med. 2000;67:880–2.

    CAS  PubMed  Google Scholar 

  101. Pike CJ, Carroll JC, Rosario ER, Barron AM. Protective actions of sex steroid hormones in Alzheimer's disease. Front Neuroendocrinol. 2009;30:239–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Hogervorst E, Williams J, Budge M, et al. Serum total testosterone is lower in men with Alzheimer's disease. Neurol Endocrinol Lett. 2001;22:163–8.

    CAS  Google Scholar 

  103. Rasmuson S, Nasman B, Carlstrom K, Olsson T. Increased levels of adrenocortical and gonadal hormones in mild to moderate Alzheimer's disease. Dement Geriatr Cogn Disord. 2002;13:74–9.

    CAS  PubMed  Google Scholar 

  104. Rosario ER, Chang L, Stanczyk FZ, Pike CJ. Age-related testosterone depletion and the development of Alzheimer disease. JAMA. 2004;292:1431–2.

    CAS  PubMed  Google Scholar 

  105. Rosario ER, Chang L, Head EH, et al. Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer's disease. Neurobiol Aging. 2011;32:604–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Moffat SD, Zonderman AB, Metter EJ, et al. Free testosterone and risk for Alzheimer disease in older men. Neurology. 2004;62:188–93.

    CAS  PubMed  Google Scholar 

  107. Grossmann M, Thomas MC, Panagiotopoulos S, et al. Low testosterone levels are common and associated with insulin resistance in men with diabetes. J Clin Endocrinol Metab. 2008;93:1834–40.

    CAS  PubMed  Google Scholar 

  108. Kapoor D, Aldred H, Clark S, et al. Clinical and biochemical assessment of hypogonadism in men with type 2 diabetes: correlations with bioavailable testosterone and visceral adiposity. Diabetes Care. 2007;30:911–7.

    CAS  PubMed  Google Scholar 

  109. Hougaku H, Fleg JL, Najjar SS, et al. Relationship between androgenic hormones and arterial stiffness, based on longitudinal hormone measurements. Am J Physiol Endocrinol Metab. 2006;290:E234–42.

    CAS  PubMed  Google Scholar 

  110. Goncharov NP, Katsya GV, Chagina NA, Gooren LJ. Three definitions of metabolic syndrome applied to a sample of young obese men and their relation with plasma testosterone. Aging Male. 2008;11:118–22.

    CAS  PubMed  Google Scholar 

  111. Kapoor D, Clarke S, Stanworth R, et al. The effect of testosterone replacement therapy on adipocytokines and C-reactive protein in hypogonadal men with type 2 diabetes. Eur J Endocrinol. 2007;156:595–602.

    CAS  PubMed  Google Scholar 

  112. Bhasin S, Parker RA, Sattler F, et al. Effects of testosterone supplementation on whole body and regional fat mass and distribution in human immunodeficiency virus-infected men with abdominal obesity. J Clin Endocrinol Metab. 2007;92:1049–57.

    CAS  PubMed  Google Scholar 

  113. Kapoor D, Goodwin E, Channer KS, Jones TH. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Endocrinol. 2006;154:899–906.

    CAS  PubMed  Google Scholar 

  114. Lage MJ, Barber BL, Markus RA. Association between androgen-deprivation therapy and incidence of diabetes among males with prostate cancer. Urology. 2007;70:1104–8.

    CAS  PubMed  Google Scholar 

  115. Keating NL, O'Malley AJ, Smith MR. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol. 2006;24:4448–56.

    CAS  PubMed  Google Scholar 

  116. Braga-Basaria M, Dobs AS, Muller DC, et al. Metabolic syndrome in men with prostate cancer undergoing long-term androgen-deprivation therapy. J Clin Oncol. 2006;24:3979–83.

    PubMed  Google Scholar 

  117. Haidar A, Yassin A, Saad F, Shabsigh R. Effects of androgen deprivation on glycaemic control and on cardiovascular biochemical risk factors in men with advanced prostate cancer with diabetes. Aging Male. 2007;10:189–96.

    CAS  PubMed  Google Scholar 

  118. Hogervorst E, Lehmann DJ, Warden DR, et al. Apolipoprotein E epsilon4 and testosterone interact in the risk of Alzheimer's disease in men. Int J Geriatr Psychiatry. 2002;17:938–40.

    CAS  PubMed  Google Scholar 

  119. Raber J, Bongers G, LeFevour A, et al. Androgens protect against apolipoprotein E4-induced cognitive deficits. J Neurosci. 2002;22:5204–9.

    CAS  PubMed  Google Scholar 

  120. Pfankuch T, Rizk A, Olsen R, et al. Role of circulating androgen levels in effects of apoE4 on cognitive function. Brain Res. 2005;1053:88–96.

    CAS  PubMed  Google Scholar 

  121. Rizk-Jackson A, Robertson J, Raber J. Tfm-AR modulates the effects of ApoE4 on cognition. J Neurochem. 2008;105:63–7.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH grant AG34103 (CJP).

Compliance with Ethics Guidelines

Conflict of Interest

Anusha Jayaraman declares that she has no conflict of interest. Christian J. Pike declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian J. Pike.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 2 Diabetes and Insulin Resistance

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaraman, A., Pike, C.J. Alzheimer’s Disease and Type 2 Diabetes: Multiple Mechanisms Contribute to Interactions. Curr Diab Rep 14, 476 (2014). https://doi.org/10.1007/s11892-014-0476-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0476-2

Keywords

Navigation