Skip to main content

Advertisement

Log in

Lack of Astrocytic Glycogen Alters Synaptic Plasticity but Not Seizure Susceptibility

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Brain glycogen is mainly stored in astrocytes. However, recent studies both in vitro and in vivo indicate that glycogen also plays important roles in neurons. By conditional deletion of glycogen synthase (GYS1), we previously developed a mouse model entirely devoid of glycogen in the central nervous system (GYS1Nestin-KO). These mice displayed altered electrophysiological properties in the hippocampus and increased susceptibility to kainate-induced seizures. To understand which of these functions are related to astrocytic glycogen, in the present study, we generated a mouse model in which glycogen synthesis is eliminated specifically in astrocytes (GYS1Gfap-KO). Electrophysiological recordings of awake behaving mice revealed alterations in input/output curves and impaired long-term potentiation, similar, but to a lesser extent, to those obtained with GYS1Nestin-KO mice. Surprisingly, GYS1Gfap-KO mice displayed no change in susceptibility to kainate-induced seizures as determined by fEPSP recordings and video monitoring. These results confirm the importance of astrocytic glycogen in synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brown AM (2004) Brain glycogen re-awakened. J Neurochem 89:537–552. https://doi.org/10.1111/j.1471-4159.2004.02421.x

    Article  CAS  PubMed  Google Scholar 

  2. Saez I, Duran J, Sinadinos C, Beltran A, Yanes O, Tevy MF, Martínez-Pons C, Milán M et al (2014) Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. J Cereb Blood Flow Metab 34:945–955. https://doi.org/10.1038/jcbfm.2014.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rubio-Villena C, Viana R, Bonet J, Garcia-Gimeno MA, Casado M, Heredia M, Sanz P (2018) Astrocytes: new players in progressive myoclonus epilepsy of Lafora type. Hum Mol Genet 27:1290–1300. https://doi.org/10.1093/hmg/ddy044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gibbs ME (2016) Role of glycogenolysis in memory and learning: regulation by noradrenaline, serotonin and ATP. Front Integr Neurosci 9. https://doi.org/10.3389/fnint.2015.00070

  5. Alberini CM, Cruz E, Descalzi G, Bessières B, Gao V (2018) Astrocyte glycogen and lactate: new insights into learning and memory mechanisms. Glia 66:1244–1262. https://doi.org/10.1002/glia.23250

    Article  PubMed  Google Scholar 

  6. Duran J, Guinovart JJ (2015) Brain glycogen in health and disease. Mol Asp Med 46:70–77. https://doi.org/10.1016/j.mam.2015.08.007

    Article  CAS  Google Scholar 

  7. Oe Y, Akther S, Hirase H (2019) Regional distribution of glycogen in the mouse brain visualized by immunohistochemistry. Adv Neurobiol 23:147–168. https://doi.org/10.1007/978-3-030-27480-1_5

    Article  PubMed  Google Scholar 

  8. Schulz A, Sekine Y, Oyeyemi MJ, Abrams AJ, Basavaraju M, Han SM, Groth M, Morrison H et al (2020) The stress-responsive gene GDPGP1/mcp-1 regulates neuronal glycogen metabolism and survival. J Cell Biol 219. https://doi.org/10.1083/jcb.201807127

  9. Duran J, Saez I, Gruart A, Guinovart JJ, Delgado-García JM (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33:550–556. https://doi.org/10.1038/jcbfm.2012.200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. López-Ramos JC, Duran J, Gruart A, Guinovart JJ, Delgado-García JM (2015) Role of brain glycogen in the response to hypoxia and in susceptibility to epilepsy. Front Cell Neurosci 9. https://doi.org/10.3389/fncel.2015.00431

  11. Duran J, Gruart A, Varea O, López-Soldado I, Delgado-García JM, Guinovart JJ (2019) Lack of neuronal glycogen impairs memory formation and learning-dependent synaptic plasticity in mice. Front Cell Neurosci 13:374. https://doi.org/10.3389/fncel.2019.00374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gregorian C, Nakashima J, Le Belle J et al (2009) Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J Neurosci 29:1874–1886. https://doi.org/10.1523/JNEUROSCI.3095-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Elsevier, AP, Amsterdam

    Google Scholar 

  14. Gruart A (2006) Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J Neurosci 26:1077–1087. https://doi.org/10.1523/JNEUROSCI.2834-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gureviciene I, Ikonen S, Gurevicius K, Sarkaki A, van Groen T, Pussinen R, Ylinen A, Tanila H (2004) Normal induction but accelerated decay of LTP in APP + PS1 transgenic mice. Neurobiol Dis 15:188–195. https://doi.org/10.1016/j.nbd.2003.11.011

    Article  CAS  PubMed  Google Scholar 

  16. Valles-Ortega J, Duran J, Garcia-Rocha M, Bosch C, Saez I, Pujadas L, Serafin A, Cañas X et al (2011) Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Mol Med 3:667–681. https://doi.org/10.1002/emmm.201100174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carulla P, Bribián A, Rangel A, Gavín R, Ferrer I, Caelles C, del Río JA, Llorens F (2011) Neuroprotective role of PrP C against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7–PSD-95 binding. MBoC 22:3041–3054. https://doi.org/10.1091/mbc.e11-04-0321

    Article  CAS  PubMed  Google Scholar 

  18. Rangel A, Madroñal N, Massó AG i et al (2009) Regulation of GABAA and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice. PLoS One 4:e7592. https://doi.org/10.1371/journal.pone.0007592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rangel A, Burgaya F, Gavín R, Soriano E, Aguzzi A, del Río JA (2007) Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: role of AMPA/kainate receptors. J Neurosci Res 85:2741–2755. https://doi.org/10.1002/jnr.21215

    Article  CAS  PubMed  Google Scholar 

  20. Thompson RF (2005) In search of memory traces. Annu Rev Psychol 56:1–23. https://doi.org/10.1146/annurev.psych.56.091103.070239

    Article  PubMed  Google Scholar 

  21. Gruart A, Leal-Campanario R, López-Ramos JC, Delgado-García JM (2015) Functional basis of associative learning and its relationships with long-term potentiation evoked in the involved neural circuits: lessons from studies in behaving mammals. Neurobiol Learn Mem 124:3–18. https://doi.org/10.1016/j.nlm.2015.04.006

    Article  PubMed  Google Scholar 

  22. Clarke JR, Cammarota M, Gruart A, Izquierdo I, Delgado-Garcia JM (2010) Plastic modifications induced by object recognition memory processing. Proc Natl Acad Sci 107:2652–2657. https://doi.org/10.1073/pnas.0915059107

    Article  PubMed  Google Scholar 

  23. Moser EI, Moser M-B, McNaughton BL (2017) Spatial representation in the hippocampal formation: a history. Nat Neurosci 20:1448–1464. https://doi.org/10.1038/nn.4653

    Article  CAS  PubMed  Google Scholar 

  24. Bliss TV, Collingridge GL (2013) Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain 6:5. https://doi.org/10.1186/1756-6606-6-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lévesque M, Avoli M (2013) The kainic acid model of temporal lobe epilepsy. Neurosci Biobehav Rev 37:2887–2899. https://doi.org/10.1016/j.neubiorev.2013.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oliet SHR (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292:923–926. https://doi.org/10.1126/science.1059162

    Article  CAS  PubMed  Google Scholar 

  27. McKenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358. https://doi.org/10.1002/jnr.21444

    Article  CAS  PubMed  Google Scholar 

  28. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653. https://doi.org/10.1111/j.1471-4159.2006.03913.x

    Article  CAS  PubMed  Google Scholar 

  29. Gibbs ME, Lloyd HGE, Santa T, Hertz L (2007) Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res 85:3326–3333. https://doi.org/10.1002/jnr.21307

    Article  CAS  PubMed  Google Scholar 

  30. Schousboe A, Sickmann HM, Walls AB, Bak LK, Waagepetersen HS (2010) Functional importance of the astrocytic glycogen-shunt and glycolysis for maintenance of an intact intra/extracellular glutamate gradient. Neurotox Res 18:94–99. https://doi.org/10.1007/s12640-010-9171-5

    Article  PubMed  Google Scholar 

  31. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405. https://doi.org/10.1146/annurev.physiol.64.092501.114547

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823. https://doi.org/10.1016/j.cell.2011.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54:214–222. https://doi.org/10.1002/glia.20377

    Article  PubMed  Google Scholar 

  34. Bak LK, Walls AB, Schousboe A, Waagepetersen HS (2018) Astrocytic glycogen metabolism in the healthy and diseased brain. J Biol Chem 293:7108–7116. https://doi.org/10.1074/jbc.R117.803239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. DiNuzzo M, Mangia S, Maraviglia B, Giove F (2015) Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy? Metab Brain Dis 30:307–316. https://doi.org/10.1007/s11011-014-9524-5

    Article  CAS  PubMed  Google Scholar 

  36. DiNuzzo M, Mangia S, Maraviglia B, Giove F (2014) Physiological bases of the K+ and the glutamate/GABA hypotheses of epilepsy. Epilepsy Res 108:995–1012. https://doi.org/10.1016/j.eplepsyres.2014.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duran J, Gruart A, López-Ramos JC, Delgado-García JM, Guinovart JJ (2019) Glycogen in astrocytes and neurons: physiological and pathological aspects. In: DiNuzzo M, Schousboe A (eds) Brain glycogen metabolism. Springer International Publishing, Cham, pp. 311–329

    Chapter  Google Scholar 

  38. Maglóczky Z, Freund TF (2005) Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends Neurosci 28:334–340. https://doi.org/10.1016/j.tins.2005.04.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Anna Adrover, Emma Veza, and Anna Guitart for technical assistance, Neus Prats and Mònica Aguilera from the IRB Histopathology Facility, and Laura Alcaide, Vanessa Hernandez, María Sánchez Enciso, and José M. González Martín for their help in animal handling and care. We also thank Olga Varea for helpful advice and discussions. IRB Barcelona and IBEC are recipients of a Severo Ochoa Award of Excellence from MINECO (Government of Spain).

Funding

This study was supported by grants from the MINECO (BFU2017-82375-R to AG and JMD-G, RTI2018-099773-B-I00 to JADR and AH, and BFU2017-84345-P to JD and JG), the CIBER de Diabetes y Enfermedades Metabólicas Asociadas (ISCIII, Ministerio de Ciencia e Innovación), and a grant from the National Institutes of Health (NIH NINDS P01NS097197) to JG. The project also received funding from “la Caixa” Foundation (ID 100010434) under the agreement LCF/PR/HR19/52160007 with JADR. MKB has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 754510.

Author information

Authors and Affiliations

Authors

Contributions

JD and JJG conceived the study. JD generated and maintained the GYS1Gfap-Cre line. JD and MKB collected brain tissues and performed biochemical and histological analyses. AG and JMD-G performed electrophysiological studies before and after single kainate injections. AH and JAR performed seizure video-monitoring with multiple kainate injections. All authors analyzed data and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Jordi Duran.

Ethics declarations

All experiments were carried out following European Union (2010/63/EU) and Spanish (BOE 34/11370-421, 2013) regulations for the use of laboratory animals. In addition, all experimental protocols were approved by the Ethics Committee of the Pablo de Olavide University.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

(MP4 218,222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran, J., Brewer, M.K., Hervera, A. et al. Lack of Astrocytic Glycogen Alters Synaptic Plasticity but Not Seizure Susceptibility. Mol Neurobiol 57, 4657–4666 (2020). https://doi.org/10.1007/s12035-020-02055-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02055-5

Keywords

Navigation