Skip to main content
Log in

Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy?

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Epilepsy is a family of brain disorders with a largely unknown etiology and high percentage of pharmacoresistance. The clinical manifestations of epilepsy are seizures, which originate from aberrant neuronal synchronization and hyperexcitability. Reactive astrocytosis, a hallmark of the epileptic tissue, develops into loss-of-function of glutamine synthetase, impairment of glutamate-glutamine cycle and increase in extracellular and astrocytic glutamate concentration. Here, we argue that chronically elevated intracellular glutamate level in astrocytes is instrumental to alterations in the metabolism of glycogen and leads to the synthesis of polyglucosans. Unaccessibility of glycogen-degrading enzymes to these insoluble molecules compromises the glycogenolysis-dependent reuptake of extracellular K+ by astrocytes, thereby leading to increased extracellular K+ and associated membrane depolarization. Based on current knowledge, we propose that the deterioration in structural homogeneity of glycogen particles is relevant to disruption of brain K+ homeostasis and increased susceptibility to seizures in epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FBPase:

Fructose-1,6-bisphosphatase

GS:

Glutamine synthetase

GSK3:

Glycogen synthase kinase 3

LD:

Lafora disease

MSO:

L-methionine-SR-sulfoximine

NKA:

Na+-K+-activated adenosintrisphosphatase

NREM:

Non rapid eye movement

PC:

Pyruvate carboxylase

PEPCK:

Phosphoenolpyruvate carboxykinase

PGB:

Polyglucosan body

TCA:

Tricarboxylic acid

VIP:

Vasoactive intestinal peptide

References

  • Abel TJ, Hebb AO, Keene CD, Born DE, Silbergeld DL (2010) Parahippocampal corpora amylacea: case report. Neurosurgery 66:E1206–E1207

    PubMed  Google Scholar 

  • Agari T, Kobayashi K, Watanabe K, Date I, Ohtsuka Y (2012) Cryptogenic west syndrome and subsequent mesial temporal lobe epilepsy. Epileptic Disord 14:334–339

    PubMed  Google Scholar 

  • Amzica F, Massimini M, Manfridi A (2002) Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J Neurosci 22:1042–1053

    CAS  PubMed  Google Scholar 

  • Badawy RA, Curatolo JM, Newton M, Berkovic SF, Macdonell RA (2006) Sleep deprivation increases cortical excitability in epilepsy: syndrome-specific effects. Neurology 67:1018–1022

    CAS  PubMed  Google Scholar 

  • Ballanyi K, Grafe P, ten Bruggencate G (1987) Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. J Physiol 382:159–174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benington JH, Heller HC (1995) Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45:347–360

    CAS  PubMed  Google Scholar 

  • Bernard-Helary K, Lapouble E, Ardourel M, Hevor T, Cloix JF (2000) Correlation between brain glycogen and convulsive state in mice submitted to methionine sulfoximine. Life Sci 67:1773–1781

    CAS  PubMed  Google Scholar 

  • Boison D (2011) Methylxanthines, seizures, and excitotoxicity. Handb Exp Pharmacol 200:251–266

    Google Scholar 

  • Boison D, Stewart KA (2009) Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentation. Biochem Pharmacol 78:1428–1437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boissonnet A, Hevor T, Landemarre L, Cloix JF (2013) Monoamines and glycogen levels in cerebral cortices of fast and slow methionine sulfoximine-inbred mice. Epilepsy Res 104:217–225

    CAS  PubMed  Google Scholar 

  • Bolanos JP, Almeida A (2010) The pentose-phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life 62:14–18

    CAS  PubMed  Google Scholar 

  • Cavanagh JB (1999) Corpora-amylacea and the family of polyglucosan diseases. Brain Res Brain Res Rev 29:265–295

    CAS  PubMed  Google Scholar 

  • Cavanagh JB, Jones HB (2000) Glycogenosomes in the aging rat brain: their occurrence in the visual pathways. Acta Neuropathol 99:496–502

    CAS  PubMed  Google Scholar 

  • Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57:226–235

    CAS  PubMed  Google Scholar 

  • Cherian PJ, Radhakrishnan VV, Radhakrishnan K (2003) The significance of corpora amylacea in mesial temporal lobe epilepsy. Neurol India 51:277–279

    PubMed  Google Scholar 

  • Chever O, Djukic B, McCarthy KD, Amzica F (2010) Implication of Kir4.1 channel in excess potassium clearance: an in vivo study on anesthetized glial-conditional Kir4.1 knock-out mice. J Neurosci 30:15769–15777

    CAS  PubMed  Google Scholar 

  • Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin LR, Buck J, MacVicar BA (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chow SY, Yen-Chow YC, White HS, Hertz L, Woodbury DM (1991) Effects of potassium on the anion and cation contents of primary cultures of mouse astrocytes and neurons. Neurochem Res 16:1275–1283

    CAS  PubMed  Google Scholar 

  • Chung MH, Horoupian DS (1996) Corpora amylacea: a marker for mesial temporal sclerosis. J Neuropathol Exp Neurol 55:403–408

    CAS  PubMed  Google Scholar 

  • Claudio OI, Berrios N, Garcia M, Casasnovas R, Ortiz JG (2002) Veratridine, but not elevated K+, inhibits excitatory amino acid transporter activity in rat hippocampal slices. Epilepsia 43(Suppl 5):184–187

    CAS  PubMed  Google Scholar 

  • Cloix JF, Hevor T (2009) Epilepsy, regulation of brain energy metabolism and neurotransmission. Curr Med Chem 16:841–853

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cloix JF, Hevor T (2011) Glycogen as a putative target for diagnosis and therapy in brain pathologies. ISRN Pathology. doi:10.5402/2011/930729

  • Criado O, Aguado C, Gayarre J, Duran-Trio L, Garcia-Cabrero AM, Vernia S, San Millan B, Heredia M, Roma-Mateo C, Mouron S, Juana-Lopez L, Dominguez M, Navarro C, Serratosa JM, Sanchez M, Sanz P, Bovolenta P, Knecht E, Rodriguez de Cordoba S (2012) Lafora bodies and neurological defects in malin-deficient mice correlate with impaired autophagy. Hum Mol Genet 21:1521–1533

    CAS  PubMed  Google Scholar 

  • Cruz NF, Dienel GA (2002) High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 22:1476–1489

    CAS  PubMed  Google Scholar 

  • D’Ambrosio R (2004) The role of glial membrane ion channels in seizures and epileptogenesis. Pharmacol Ther 103:95–108

    PubMed  Google Scholar 

  • Dalsgaard MK, Madsen FF, Secher NH, Laursen H, Quistorff B (2007) High glycogen levels in the hippocampus of patients with epilepsy. J Cereb Blood Flow Metab 27:1137–1141

    CAS  PubMed  Google Scholar 

  • Das A, Balan S, Mathew A, Radhakrishnan V, Banerjee M, Radhakrishnan K (2011) Corpora amylacea deposition in the hippocampus of patients with mesial temporal lobe epilepsy: a new role for an old gene? Indian J Hum Genet 17(Suppl 1):S41–S47

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Lanerolle NC, Lee TS, Spencer DD (2010) Astrocytes and epilepsy. Neurotherapeutics 7:424–438

    PubMed  Google Scholar 

  • Delorme P, Hevor TK (1985) Glycogen particles in methionine sulfoximine epileptogenic rodent brain and liver after the administration of methionine and actinomycin D. Neuropathol Appl Neurobiol 11:117–128

    CAS  PubMed  Google Scholar 

  • Derry CP, Duncan S (2013) Sleep and epilepsy. Epilepsy Behav 26:394–404

    PubMed  Google Scholar 

  • Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184

    CAS  PubMed  Google Scholar 

  • Dienel GA (2013) Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis? Neurochem Int 63:244–258

    CAS  PubMed Central  PubMed  Google Scholar 

  • DiNuzzo M (2013) Kinetic analysis of glycogen turnover: relevance to human brain C-NMR spectroscopy. J Cereb Blood Flow Metab 33(10):1540–1548

    CAS  PubMed Central  PubMed  Google Scholar 

  • DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling. J Cereb Blood Flow Metab 30:1895–1904

    CAS  PubMed Central  PubMed  Google Scholar 

  • DiNuzzo M, Maraviglia B, Giove F (2011) Why does the brain (not) have glycogen? Bioessays 33:319–326

    CAS  PubMed  Google Scholar 

  • DiNuzzo M, Mangia S, Maraviglia B, Giove F (2012) The role of astrocytic glycogen in supporting the energetics of neuronal activity. Neurochem Res 37:2432–2438

    CAS  PubMed Central  PubMed  Google Scholar 

  • DiNuzzo M, Mangia S, Maraviglia B, Giove F (2013) Regulatory mechanisms for glycogenolysis and K + uptake in brain astrocytes. Neurochem Int 63:458–464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dringen R, Schmoll D, Cesar M, Hamprecht B (1993) Incorporation of radioactivity from [14C]lactate into the glycogen of cultured mouse astroglial cells. Evidence for gluconeogenesis in brain cells. Biol Chem Hoppe Seyler 374:343–347

    CAS  PubMed  Google Scholar 

  • Dudek FE, Yasumura T, Rash JE (1998) ‘Non-synaptic’ mechanisms in seizures and epileptogenesis. Cell Biol Int 22:793–805

    CAS  PubMed  Google Scholar 

  • Dufour S, Dufour P, Chever O, Vallee R, Amzica F (2011) In vivo simultaneous intra- and extracellular potassium recordings using a micro-optrode. J Neurosci Methods 194:206–217

    CAS  PubMed  Google Scholar 

  • Duran J, Tevy MF, Garcia-Rocha M, Calbo J, Milan M, Guinovart JJ (2012) Deleterious effects of neuronal accumulation of glycogen in flies and mice. EMBO Mol Med 4:719–729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duran J, Gruart A, Garcia-Rocha M, Delgado-Garcia JM, Guinovart JJ (2014) Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum Mol Genet. doi:10.1093/hmg/ddu024

  • During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32:618–624

    CAS  PubMed  Google Scholar 

  • Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JC, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363:28–37

    CAS  PubMed  Google Scholar 

  • Engel J Jr, Brown WJ, Kuhl DE, Phelps ME, Mazziotta JC, Crandall PH (1982) Pathological findings underlying focal temporal lobe hypometabolism in partial epilepsy. Ann Neurol 12:518–528

    PubMed  Google Scholar 

  • Engel J Jr, Kuhl DE, Phelps ME, Rausch R, Nuwer M (1983) Local cerebral metabolism during partial seizures. Neurology 33:400–413

    PubMed  Google Scholar 

  • Erdamar S, Zhu ZQ, Hamilton WJ, Armstrong DL, Grossman RG (2000) Corpora amylacea and heat shock protein 27 in Ammon’s horn sclerosis. J Neuropathol Exp Neurol 59:698–706

    CAS  PubMed  Google Scholar 

  • Fisher RS, Pedley TA, Moody WJ Jr, Prince DA (1976) The role of extracellular potassium in hippocampal epilepsy. Arch Neurol 33:76–83

    CAS  PubMed  Google Scholar 

  • Folbergrova J (1973) Glycogen and glycogen phosphorylase in the cerebral cortex of mice under the influence of methionine sulphoximine. J Neurochem 20:547–557

    CAS  PubMed  Google Scholar 

  • Folbergrova J, Passonneau JV, Lowry OH, Schulz DW (1969) Glycogen, ammonia and related metabolities in the brain during seizures evoked by methionine sulphoximine. J Neurochem 16:191–203

    CAS  PubMed  Google Scholar 

  • Folbergrova J, Katsura KI, Siesjo BK (1996) Glycogen accumulated in the brain following insults is not degraded during a subsequent period of ischemia. J Neurol Sci 137:7–13

    CAS  PubMed  Google Scholar 

  • Gizak A, Mazurek J, Wozniak M, Maciaszczyk-Dziubinska E, Rakus D (2013) Destabilization of fructose 1,6-bisphosphatase-Z-line interactions is a mechanism of glyconeogenesis down-regulation in vivo. Biochim Biophys Acta 1833:622–628

    CAS  PubMed  Google Scholar 

  • Goldman SS (1988) Gluconeogenesis in the amphibian retina. Lactate is preferred to glutamate as the gluconeogenic precursor. Biochem J 254:359–365

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman SS (1990) Evidence that the gluconeogenic pathway is confined to an enriched muller cell fraction derived from the amphibian retina. Exp Eye Res 50:213–218

    CAS  PubMed  Google Scholar 

  • Hablitz JJ, Heinemann U (1989) Alterations in the microenvironment during spreading depression associated with epileptiform activity in the immature neocortex. Brain Res Dev Brain Res 46:243–252

    CAS  PubMed  Google Scholar 

  • Heinemann U, Lux HD (1977) Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat. Brain Res 120:231–249

    CAS  PubMed  Google Scholar 

  • Heinemann U, Konnerth A, Pumain R, Wadman WJ (1986) Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue. Adv Neurol 44:641–661

    CAS  PubMed  Google Scholar 

  • Hejazi M, Fettke J, Haebel S, Edner C, Paris O, Frohberg C, Steup M, Ritte G (2008) Glucan, water dikinase phosphorylates crystalline maltodextrins and thereby initiates solubilization. Plant J 55:323–334

    CAS  PubMed  Google Scholar 

  • Helary-Bernard K, Ardourel MY, Cloix JF, Hevor T (2000) The xenobiotic methionine sulfoximine modulates carbohydrate anabolism and related genes expression in rodent brain. Toxicology 153:179–187

    CAS  PubMed  Google Scholar 

  • Hertz L (1978) An intense potassium uptake into astrocytes, its further enhancement by high concentrations of potassium, and its possible involvement in potassium homeostasis at the cellular level. Brain Res 145:202–208

    CAS  PubMed  Google Scholar 

  • Hertz L, Xu J, Song D, Du T, Yan E, Peng L (2013a) Brain glycogenolysis, adrenoceptors, pyruvate carboxylase, Na(+),K(+)-ATPase and Marie E. Gibbs' pioneering learning studies. Front Integr Neurosci 7:20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hertz L, Xu J, Song D, Yan E, Gu L, Peng L (2013b) Astrocytic and neuronal accumulation of elevated extracellular K(+) with a 2/3 K(+)/Na(+) flux ratio-consequences for energy metabolism, osmolarity and higher brain function. Front Comput Neurosci 7:114

    PubMed Central  PubMed  Google Scholar 

  • Hevor TK, Gayet J (1978) Fructose-1,6-biphosphatase and phosphofructokinase activities in the brain of mice submitted to methionine sulfoximine. Brain Res 150:210–215

    CAS  PubMed  Google Scholar 

  • Hevor TK, Delorme P, Beauvillain JC (1986) Glycogen synthesis and immunocytochemical study of fructose-1,6-biphosphatase in methionine sulfoximine epileptogenic rodent brain. J Cereb Blood Flow Metab 6:292–297

    CAS  PubMed  Google Scholar 

  • Ibrahim MZ (1975) Glycogen and its related enzymes of metabolism in the central nervous system. Adv Anat Embryol Cell Biol 52:3–89

    CAS  PubMed  Google Scholar 

  • Inoue N, Matsukado Y, Goto S, Miyamoto E (1988) Localization of glycogen synthase in brain. J Neurochem 50:400–405

    CAS  PubMed  Google Scholar 

  • Jensen MS, Azouz R, Yaari Y (1994) Variant firing patterns in rat hippocampal pyramidal cells modulated by extracellular potassium. J Neurophysiol 71:831–839

    CAS  PubMed  Google Scholar 

  • Jiruska P, de Curtis M, Jefferys JG, Schevon CA, Schiff SJ, Schindler K (2013) Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol 591:787–797

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kakita A, Kameyama S, Hayashi S, Masuda H, Takahashi H (2005) Pathologic features of dysplasia and accompanying alterations observed in surgical specimens from patients with intractable epilepsy. J Child Neurol 20:341–350

    PubMed  Google Scholar 

  • Karnovsky ML, Reich P, Anchors JM, Burrows BL (1983) Changes in brain glycogen during slow-wave sleep in the rat. J Neurochem 41:1498–1501

    CAS  PubMed  Google Scholar 

  • Kaufman EE, Driscoll BF (1992) Carbon dioxide fixation in neuronal and astroglial cells in culture. J Neurochem 58:258–262

    CAS  PubMed  Google Scholar 

  • Kawamura T, Morioka T, Nishio S, Fukui K, Fukui M (2002) Temporal lobe epilepsy and corpora amylacea in the hippocampus: clinicopathologic correlation. Neurol Res 24:563–569

    PubMed  Google Scholar 

  • Knecht E, Aguado C, Sarkar S, Korolchuk VI, Criado-Garcia O, Vernia S, Boya P, Sanz P, Rodriguez de Cordoba S, Rubinsztein DC (2010) Impaired autophagy in Lafora disease. Autophagy 6:991–993

    PubMed Central  PubMed  Google Scholar 

  • Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD (2002) Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci 22:5581–5587

    CAS  PubMed  Google Scholar 

  • Konnerth A, Heinemann U, Yaari Y (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. I Development of seizurelike activity in low extracellular calcium J Neurophysiol 56:409–423

    CAS  Google Scholar 

  • Kotagal P (2001) The relationship between sleep and epilepsy. Semin Pediatr Neurol 8:241–250

    CAS  PubMed  Google Scholar 

  • Kothare SV, Kaleyias J (2010) Sleep and epilepsy in children and adolescents. Sleep Med 11:674–685

    PubMed  Google Scholar 

  • Lai V, Mak HK, Yung AW, Ho WY, Hung KN (2010) Neuroimaging techniques in epilepsy. Hong Kong Med J 16:292–298

    PubMed  Google Scholar 

  • Lebovitz RM (1996) Quantitative examination of dynamic interneuronal coupling via single-spike extracellular potassium ion transients. J Theor Biol 180:11–25

    CAS  PubMed  Google Scholar 

  • Leel-Ossy L (1998) Corpora amylacea in hippocampal sclerosis. J Neurol Neurosurg Psychiatry 65:614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Zeng L, Ma K, Baba O, Zheng P, Liu Y, Wang Y (2013) Laforin-Malin Complex Degrades Polyglucosan Bodies in Concert with Glycogen Debranching Enzyme and Brain Isoform Glycogen Phosphorylase. Mol Neurobiol 49:645–657

    Google Scholar 

  • Loffler T, Al-Robaiy S, Bigl M, Eschrich K, Schliebs R (2001) Expression of fructose-1,6-bisphosphatase mRNA isoforms in normal and basal forebrain cholinergic lesioned rat brain. Int J Dev Neurosci 19:279–285

    CAS  PubMed  Google Scholar 

  • Lomako J, Lomako WM, Kirkman BR, Whelan WJ (1994) The role of phosphate in muscle glycogen. Biofactors 4:167–171

    CAS  PubMed  Google Scholar 

  • Magistretti PJ (1988) Regulation of glycogenolysis by neurotransmitters in the central nervous system. Diabete Metab 14:237–246

    CAS  PubMed  Google Scholar 

  • Magistretti PJ (1990) VIP neurons in the cerebral cortex. Trends Pharmacol Sci 11:250–254

    CAS  PubMed  Google Scholar 

  • Malow BA (2004) Sleep deprivation and epilepsy. Epilepsy Curr 4:193–195

    PubMed Central  PubMed  Google Scholar 

  • Mangia S, Giove F, DiNuzzo M (2012) Metabolic pathways and activity-dependent modulation of glutamate concentration in the human brain. Neurochem Res 37:2554–2561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matos G, Andersen ML, do Valle AC, Tufik S (2010) The relationship between sleep and epilepsy: evidence from clinical trials and animal models. J Neurol Sci 295:1–7

    PubMed  Google Scholar 

  • McKenna MC (2013) Glutamate Pays Its Own Way in Astrocytes. Front Endocrinol (Lausanne) 4:191

    Google Scholar 

  • McKenna MC, Sonnewald U, Huang X, Stevenson J, Zielke HR (1996) Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes. J Neurochem 66:386–393

    CAS  PubMed  Google Scholar 

  • McMahon J, Huang X, Yang J, Komatsu M, Yue Z, Qian J, Zhu X, Huang Y (2012) Impaired autophagy in neurons after disinhibition of mammalian target of rapamycin and its contribution to epileptogenesis. J Neurosci 32:15704–15714

    CAS  PubMed Central  PubMed  Google Scholar 

  • McNamara JO (1994) Cellular and molecular basis of epilepsy. J Neurosci 14:3413–3425

    CAS  PubMed  Google Scholar 

  • Melendez R, Melendez-Hevia E, Cascante M (1997) How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building. J Mol Evol 45:446–455

    CAS  PubMed  Google Scholar 

  • Nelken I, Yaari Y (1987) The role of interstitial potassium in the generation of low-calcium hippocampal seizures. Isr J Med Sci 23:124–131

    CAS  PubMed  Google Scholar 

  • Newby AC, Worku Y, Holmquist CA (1985) Adenosine formation. Evidence for a direct biochemical link with energy metabolism. Adv Myocardiol 6:273–284

    CAS  PubMed  Google Scholar 

  • Nishimoto M, Miyakawa H, Wada K, Furuta A (2011) Activation of the VIP/VPAC2 system induces reactive astrocytosis associated with increased expression of glutamate transporters. Brain Res 1383:43–53

    CAS  PubMed  Google Scholar 

  • Nishio S, Morioka T, Kawamura T, Fukui K, Nonaka H, Matsushima M (2001) Corpora amylacea replace the hippocampal pyramidal cell layer in a patient with temporal lobe epilepsy. Epilepsia 42:960–962

    CAS  PubMed  Google Scholar 

  • Nitschke F, Wang P, Schmieder P, Girard JM, Awrey DE, Wang T, Israelian J, Zhao X, Turnbull J, Heydenreich M, Kleinpeter E, Steup M, Minassian BA (2013) Hyperphosphorylation of glucosyl C6 carbons and altered structure of glycogen in the neurodegenerative epilepsy Lafora disease. Cell Metab 17:756–767

    CAS  PubMed  Google Scholar 

  • Odedra BR, Palmer TN (1981) A putative pathway of glyconeogenesis in skeletal muscle. Biosci Rep 1:157–165

    CAS  PubMed  Google Scholar 

  • Outlaw WH Jr, Lowry OH (1979) Measurement of 10(−7) to 10(−12) mol of potassium by stimulation of pyruvate kinase. Anal Biochem 92:370–374

    CAS  PubMed  Google Scholar 

  • Oz G, Seaquist ER, Kumar A, Criego AB, Benedict LE, Rao JP, Henry P-G, Moortele P-FVD, Gruetter R (2007) Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am J Physiol Endocrinol Metab 292:E946–E951

    CAS  PubMed  Google Scholar 

  • Palmucci L, Anzil AP, Luh S (1982) Intra-astrocytic glycogen granules and corpora amylacea stain positively for polyglucosans: a cytochemical contribution on the fine structural polymorphism of particulate polysaccharides. Acta Neuropathol 57:99–102

    CAS  PubMed  Google Scholar 

  • Pedley TA, Fisher RS, Futamachi KJ, Prince DA (1976) Regulation of extracellular potassium concentration in epileptogenesis. Fed Proc 35:1254–1259

    CAS  PubMed  Google Scholar 

  • Perez EL, Lauritzen F, Wang Y, Lee TS, Kang D, Zaveri HP, Chaudhry FA, Ottersen OP, Bergersen LH, Eid T (2012) Evidence for astrocytes as a potential source of the glutamate excess in temporal lobe epilepsy. Neurobiol Dis 47:331–337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Neuronal and glial metabolite content of the epileptogenic human hippocampus. Ann Neurol 52:635–642

    CAS  PubMed  Google Scholar 

  • Petroff OA, Errante LD, Kim JH, Spencer DD (2003) N-acetyl-aspartate, total creatine, and myo-inositol in the epileptogenic human hippocampus. Neurology 60:1646–1651

    CAS  PubMed  Google Scholar 

  • Pfeiffer B, Elmer K, Roggendorf W, Reinhart PH, Hamprecht B (1990) Immunohistochemical demonstration of glycogen phosphorylase in rat brain slices. Histochemistry 94:73–80

    CAS  PubMed  Google Scholar 

  • Phelps CH (1975) An ultrastructural study of methionine sulphoximine-induced glycogen accumulation in astrocytes of the mouse cerebral cortex. J Neurocytol 4:479–490

    CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99:507–517

    CAS  PubMed  Google Scholar 

  • Qu H, Eloqayli H, Unsgard G, Sonnewald U (2001) Glutamate decreases pyruvate carboxylase activity and spares glucose as energy substrate in cultured cerebellar astrocytes. J Neurosci Res 66:1127–1132

    CAS  PubMed  Google Scholar 

  • Raben N, Plotz P, Byrne BJ (2002) Acid alpha-glucosidase deficiency (glycogenosis type II, Pompe disease). Curr Mol Med 2:145–166

    CAS  PubMed  Google Scholar 

  • Radhakrishnan VV, Rao MB, Radhakrishnan K, Thomas SV, Nayak DS, Santoshkumar B, Joseph E, Raghunath B (1999) Pathology of temporal lobe epilepsy: An analysis of 100 consecutive surgical specimens from patients with medically refractory epilepsy. Neurol India 47:196–201

    CAS  PubMed  Google Scholar 

  • Radhakrishnan A, Radhakrishnan K, Radhakrishnan VV, Mary PR, Kesavadas C, Alexander A, Sarma PS (2007) Corpora amylacea in mesial temporal lobe epilepsy: clinico-pathological correlations. Epilepsy Res 74:81–90

    PubMed  Google Scholar 

  • Rakus D, Pasek M, Krotkiewski H, Dzugaj A (2004) Interaction between muscle aldolase and muscle fructose 1,6-bisphosphatase results in the substrate channeling. Biochemistry 43:14948–14957

    CAS  PubMed  Google Scholar 

  • Ribeiro Mde C, Barbosa-Coutinho L, Mugnol F, Hilbig A, Palmini A, da Costa JC, Paglioli Neto E, Paglioli E (2003) Corpora amylacea in temporal lobe epilepsy associated with hippocampal sclerosis. Arq Neuropsiquiatr 61:942–945

    PubMed  Google Scholar 

  • Roach PJ (2011) Are there errors in glycogen biosynthesis and is laforin a repair enzyme? FEBS Lett 585:3216–3218

    CAS  PubMed  Google Scholar 

  • Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS (2012) Glycogen and its metabolism: some new developments and old themes. Biochem J 441:763–787

    CAS  PubMed  Google Scholar 

  • Robitaille Y, Carpenter S, Karpati G, DiMauro SD (1980) A distinct form of adult polyglucosan body disease with massive involvement of central and peripheral neuronal processes and astrocytes: a report of four cases and a review of the occurrence of polyglucosan bodies in other conditions such as Lafora’s disease and normal ageing. Brain 103:315–336

    CAS  PubMed  Google Scholar 

  • Rodin EA, Luby ED, Gottlieb JS (1962) The electroencephalogram during prolonged experimental sleep deprivation. Electroencephalogr Clin Neurophysiol 14:544–551

    CAS  PubMed  Google Scholar 

  • Scharf MT, Naidoo N, Zimmerman JE, Pack AI (2008) The energy hypothesis of sleep revisited. Prog Neurobiol 86:264–280

    PubMed Central  PubMed  Google Scholar 

  • Schmoll D, Fuhrmann E, Gebhardt R, Hamprecht B (1995) Significant amounts of glycogen are synthesized from 3-carbon compounds in astroglial primary cultures from mice with participation of the mitochondrial phosphoenolpyruvate carboxykinase isoenzyme. Eur J Biochem 227:308–315

    CAS  PubMed  Google Scholar 

  • Schrader J, Wahl M, Kuschinsky W, Kreutzberg GW (1980) Increase of adenosine content in cerebral cortex of the cat during bicuculline-induced seizure. Pflugers Arch 387:245–251

    CAS  PubMed  Google Scholar 

  • Seidel JL, Shuttleworth CW (2011) Contribution of astrocyte glycogen stores to progression of spreading depression and related events in hippocampal slices. Neuroscience 192:295–303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sellinger OZ, Schatz RA, Porta R, Wilens TE (1984) Brain methylation and epileptogenesis: the case of methionine sulfoximine. Ann Neurol 16(Suppl):S115–S120

    CAS  PubMed  Google Scholar 

  • Sickmann HM, Waagepetersen HS, Schousboe A, Benie AJ, Bouman SD (2012) Brain glycogen and its role in supporting glutamate and GABA homeostasis in a type 2 diabetes rat model. Neurochem Int 60:267–275

    CAS  PubMed  Google Scholar 

  • Sitoh YY, Tien RD (1998) Neuroimaging in epilepsy. J Magn Reson Imaging 8:277–288

    CAS  PubMed  Google Scholar 

  • Sonnewald U, Westergaard N, Petersen SB, Unsgard G, Schousboe A (1993) Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle. J Neurochem 61:1179–1182

    CAS  PubMed  Google Scholar 

  • Spuch C, Ortolano S, Navarro C (2012) Lafora progressive myoclonus epilepsy: recent insights into cell degeneration. Recent Pat Endocr Metab Immune Drug Discov 6:99–107

    CAS  PubMed  Google Scholar 

  • Swanson RA, Yu AC, Sharp FR, Chan PH (1989) Regulation of glycogen content in primary astrocyte culture: effects of glucose analogues, phenobarbital, and methionine sulfoximine. J Neurochem 52:1359–1365

    CAS  PubMed  Google Scholar 

  • Swanson RA, Yu AC, Chan PH, Sharp FR (1990) Glutamate increases glycogen content and reduces glucose utilization in primary astrocyte culture. J Neurochem 54:490–496

    CAS  PubMed  Google Scholar 

  • Tagliabracci VS, Girard JM, Segvich D, Meyer C, Turnbull J, Zhao X, Minassian BA, Depaoli-Roach AA, Roach PJ (2008) Abnormal metabolism of glycogen phosphate as a cause for Lafora disease. J Biol Chem 283:33816–33825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tagliabracci VS, Heiss C, Karthik C, Contreras CJ, Glushka J, Ishihara M, Azadi P, Hurley TD, DePaoli-Roach AA, Roach PJ (2011) Phosphate incorporation during glycogen synthesis and Lafora disease. Cell Metab 13:274–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi-Yanaga F (2013) Activator or inhibitor? GSK-3 as a new drug target. Biochem Pharmacol 86:191–199

    CAS  PubMed  Google Scholar 

  • Tani H, Dulla CG, Huguenard JR, Reimer RJ (2010) Glutamine is required for persistent epileptiform activity in the disinhibited neocortical brain slice. J Neurosci 30:1288–1300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Theodore WH, Newmark ME, Sato S, Brooks R, Patronas N, De La Paz R, DiChiro G, Kessler RM, Margolin R, Manning RG et al (1983) [18F]fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann Neurol 14:429–437

    CAS  PubMed  Google Scholar 

  • Valles-Ortega J, Duran J, Garcia-Rocha M, Bosch C, Saez I, Pujadas L, Serafin A, Canas X, Soriano E, Delgado-Garcia JM, Gruart A, Guinovart JJ (2011) Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Mol Med 3:667–681

    CAS  PubMed Central  PubMed  Google Scholar 

  • van der Hel WS, Notenboom RG, Bos IW, van Rijen PC, van Veelen CW, de Graan PN (2005) Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy. Neurology 64:326–333

    PubMed  Google Scholar 

  • Van Paesschen W, Revesz T, Duncan JS (1997) Corpora amylacea in hippocampal sclerosis. J Neurol Neurosurg Psychiatry 63:513–515

    PubMed Central  PubMed  Google Scholar 

  • Vanderhaeghen JJ (1971) Correlation between ultrastructure and histochemistry of Lafora bodies. Acta Neuropathol 17:24–36

    CAS  PubMed  Google Scholar 

  • Vanderwolf CH (1988) Cerebral activity and behavior: control by central cholinergic and serotonergic systems. Int Rev Neurobiol 30:225–340

    CAS  PubMed  Google Scholar 

  • Verge V, Hevor TK (1995) Regulation of fructose-1,6-bisphosphatase activity in primary cultured astrocytes. Neurochem Res 20:1049–1056

    CAS  PubMed  Google Scholar 

  • Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia-Fojeda B, Criado-Garcia O, Fernandez-Sanchez E, Medrano-Fernandez I, Dominguez J, Garcia-Rocha M, Soriano E, Rodriguez de Cordoba S, Guinovart JJ (2007) Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10:1407–1413

    CAS  PubMed  Google Scholar 

  • Walling SG, Rigoulot MA, Scharfman HE (2007) Acute and chronic changes in glycogen phosphorylase in hippocampus and entorhinal cortex after status epilepticus in the adult male rat. Eur J Neurosci 26:178–189

    PubMed Central  PubMed  Google Scholar 

  • Wang Y, Ma K, Wang P, Baba O, Zhang H, Parent JM, Zheng P, Liu Y, Minassian BA, Liu Y (2013) Laforin prevents stress-induced polyglucosan body formation and lafora disease progression in neurons. Mol Neurobiol 48:49–61

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of Glycogenolysis for Uptake of Increased Extracellular K(+) in Astrocytes: Potential Implications for K (+) Homeostasis and Glycogen Usage in Brain. Neurochem Res 38:472–485

    CAS  PubMed  Google Scholar 

  • Yaari Y, Konnerth A, Heinemann U (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. J Neurophysiol 56:424–438

    CAS  PubMed  Google Scholar 

  • Yanez AJ, Garcia-Rocha M, Bertinat R, Droppelmann C, Concha II, Guinovart JJ, Slebe JC (2004) Subcellular localization of liver FBPase is modulated by metabolic conditions. FEBS Lett 577:154–158

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author S.M. thanks the grant KL2 RR033182 from the National Insititute of Health (NIH) to the University of Minnesota Clinical and Translational Science Institute (CTSI) for support.

Disclosure/Conflict of interests

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro DiNuzzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiNuzzo, M., Mangia, S., Maraviglia, B. et al. Does abnormal glycogen structure contribute to increased susceptibility to seizures in epilepsy?. Metab Brain Dis 30, 307–316 (2015). https://doi.org/10.1007/s11011-014-9524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-014-9524-5

Keywords

Navigation