Skip to main content

Regional Distribution of Glycogen in the Mouse Brain Visualized by Immunohistochemistry

  • Chapter
  • First Online:
Brain Glycogen Metabolism

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 23))

Abstract

Considering that the brain constantly consumes a substantial amount of energy, the nature of its energy reserve is an important issue. Although the brain is rich in lipid content encompassing membranes, myelin sheath, and astrocytic lipid droplets, it is devoid of adipose tissue which serves as an energy reserve. Notably, glycogen represents the major energy store in the brain. While glycogen has been observed mainly in astrocytes for decades by electron microscopy, glycogen distribution in the brain has only been partially documented. The involvement of glycogen metabolism in memory consolidation, demonstrated by several research groups, has reiterated the functional significance of this macromolecule and the need for description of its comprehensive distribution in the brain. The combination of focused microwave-assisted brain fixation and glycogen immunohistochemistry permits assessment of glycogen distribution in the rodent brain. In this article, we describe glycogen distribution in the mouse brain using glycogen immunohistochemistry. We find heterogeneous glycogen storage patterns at multiple spatial scales. The heterogeneous glycogen distribution patterns may underlie local energy metabolism or synaptic activity, and its mechanistic understanding should extend our knowledge on brain metabolism in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anton-Sanchez L, Bielza C, Merchán-Pérez A, Rodríguez J-R, DeFelipe J, Larrañaga P (2014) Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis. Front Neuroanat 8:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Baba O (1993) Production of monoclonal antibody that recognizes glycogen and its application for immunohistochemistry. Kokubyo Gakkai Zasshi 60:264–287

    Article  CAS  PubMed  Google Scholar 

  • Bragin A, Jando G, Nadasdy Z, van Landeghem M, Buzsaki G (1995) Dentate EEG spikes and associated interneuronal population bursts in the hippocampal Hilar region of the rat. J Neurophysiol 73:1691–1705

    Article  CAS  PubMed  Google Scholar 

  • Brown AM, Tekkök SB, Ransom BR (2003) Glycogen regulation and functional role in mouse white matter. J Physiol 549:501–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AM, Evans RD, Black J, Ransom BR (2012) Schwann cell glycogen selectively supports myelinated axon function. Ann Neurol 72:406–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caley DW, Maxwell DS (1968) An electron microscopic study of the neuroglia during postnatal development of the rat cerebrum. J Comp Neurol 133:45–69

    Article  CAS  PubMed  Google Scholar 

  • Calì C, Baghabra J, Boges DJ, Holst GR, Kreshuk A, Hamprecht FA, Srinivasan M, Lehväslaiho H, Magistretti PJ (2016) Three-dimensional immersive virtual reality for studying cellular compartments in 3D models from EM preparations of neural tissues. J Comp Neurol 524:23–38

    Article  PubMed  CAS  Google Scholar 

  • Cataldo AM, Broadwell RD (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes. J Neurocytol 15:511–524

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran S, Navlakha S, Audette NJ, McCreary DD, Suhan J, Bar-Joseph Z, Barth AL (2015) Unbiased, high-throughput electron microscopy analysis of experience-dependent synaptic changes in the neocortex. J Neurosci 35:16450–16462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HB, Gordon GRJ, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin LR, Buck J, MacVicar BA (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cline GW, Petersen KF, Krssak M, Shen J, Hundal RS, Trajanoski Z, Inzucchi S, Dresner A, Rothman DL, Shulman GI (1999) Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 341:240–246

    Article  CAS  PubMed  Google Scholar 

  • Coopersmith R, Leon M (1987) Glycogen phosphorylase activity in the olfactory bulb of the young rat. J Comp Neurol 261:148–154

    Article  CAS  PubMed  Google Scholar 

  • Coopersmith R, Leon M (1995) Olfactory bulb glycogen metabolism: noradrenergic modulation in the young rat. Brain Res 674:230–237

    Article  CAS  PubMed  Google Scholar 

  • DeFelipe J, Alonso-Nanclares L, Arellano JI (2002) Microstructure of the neocortex: comparative aspects. J Neurocytol 31:299–316

    Article  PubMed  Google Scholar 

  • Drulis-Fajdasz D, Gizak A, Wójtowicz T, WiÅ›niewski JR, Rakus D (2018) Aging-associated changes in hippocampal glycogen metabolism in mice. Evidence for and against astrocyte-to-neuron lactate shuttle. Glia 66:1481–1495

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiala JC, Kirov SA, Feinberg MD, Petrak LJ, George P, Goddard CA, Harris KM (2003) Timing of neuronal and glial ultrastructure disruption during brain slice preparation and recovery in vitro. J Comp Neurol 465:90–103

    Article  PubMed  Google Scholar 

  • Gao V, Suzuki A, Magistretti PJ, Lengacher S, Pollonini G, Steinman MQ, Alberini CM (2016) Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation. Proc Natl Acad Sci 113:8526–8531

    Article  CAS  PubMed  Google Scholar 

  • Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54:214–222

    Article  PubMed  Google Scholar 

  • Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2:139–143

    Article  CAS  PubMed  Google Scholar 

  • Hirase H, Iwai Y, Takata N, Shinohara Y, Mishima T (2014) Volume transmission signalling via astrocytes. Philos Trans R Soc B 369:20130604

    Article  CAS  Google Scholar 

  • Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER (2016) Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci 113:14835–14840

    Article  CAS  PubMed  Google Scholar 

  • Koizumi J (1974) Glycogen in the central nervous system. Prog Histochem Cytochem 6:1–37

    Article  CAS  PubMed  Google Scholar 

  • Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD (2002) Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci 22:5581–5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loy R, Koziell DA, Lindsey JD, Moore RY (1980) Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol 189:699–710

    Article  CAS  PubMed  Google Scholar 

  • Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI (1992) Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest 90:1323–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin R, Bajo-Graneras R, Moratalla R, Perea G, Araque A (2015) Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 349:730–734

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Soya S, Okamoto M, Ichitani Y, Kawanaka K, Soya H (2011) Brain glycogen decreases during prolonged exercise. J Physiol 589:3383–3393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell DS, Kruger L (1965) The fine structure of astrocytes in the cerebral cortex and their response to focal injury produced by heavy ionizing particles. J Cell Biol 25:141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori S, Leblond CP (1969) Electron microscopic features and proliferation of astrocytes in the corpus callosum of the rat. J Comp Neurol 137:197–225

    Article  CAS  PubMed  Google Scholar 

  • Nakamura-Tsuruta S, Yasuda M, Nakamura T, Shinoda E, Furuyashiki T, Kakutani R, Takata H, Kato Y, Ashida H (2012) Comparative analysis of carbohydrate-binding specificities of two anti-glycogen monoclonal antibodies using ELISA and surface plasmon resonance. Carbohydr Res 350:49–54

    Article  CAS  PubMed  Google Scholar 

  • Napper RMA, Harvey RJ (1988) Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J Comp Neurol 274:168–177

    Article  CAS  PubMed  Google Scholar 

  • Newman LA, Korol DL, Gold PE (2011) Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS One 6:e28427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obel LF, Müller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A (2012) Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenerg 4:3

    Article  CAS  Google Scholar 

  • Oe Y, Baba O, Ashida H, Nakamura KC, Hirase H (2016) Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns. Glia 64:1532–1545

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogata K, Kosaka T (2002) Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113:221–233

    Article  CAS  PubMed  Google Scholar 

  • Öz G, Henry PG, Seaquist ER, Gruetter R (2003) Direct, noninvasive measurement of brain glycogen metabolism in humans. Neurochem Int 43:323–329

    Article  PubMed  CAS  Google Scholar 

  • Öz G, Seaquist ER, Kumar A, Criego AB, Benedict LE, Rao JP, Henry P-G, Van De Moortele P-F, Gruetter R (2007) Human brain glycogen content and metabolism: implications on its role in brain energy metabolism. Am J Physiol Metab 292:E946–E951

    Google Scholar 

  • Palomero-Gallagher N, Zilles K (2017) Cortical layers: cyto-, myelo-, receptor- and synaptic architecture in human cortical areas. NeuroImage 197:716–741

    Article  PubMed  Google Scholar 

  • Phelps CH (1972) Barbiturate-induced glycogen accumulation in brain. An electron microscopic study. Brain Res 39:225–234

    Article  CAS  PubMed  Google Scholar 

  • Prats C, Graham TE, Shearer J (2018) The dynamic life of the glycogen granule. J Biol Chem 293(19):7089–7098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raichle ME, Gusnard DA (2002) Appraising the brain’s energy budget. Proc Natl Acad Sci U S A 99:10237–10239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagar SM, Sharp FR, Swanson RA (1987) The regional distribution of glycogen in rat brain fixed by microwave irradiation. Brain Res 417:172–174

    Article  CAS  PubMed  Google Scholar 

  • Schuz A, Palm G (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286:442–455

    Article  CAS  PubMed  Google Scholar 

  • Shimizu N, Hamuro Y (1958) Deposition of glycogen and changes in some enzymes in brain wounds. Nature 181:781–782

    Article  CAS  PubMed  Google Scholar 

  • Sinadinos C, Valles-Ortega J, Boulan L, Solsona E, Tevy MF, Marquez M, Duran J, Lopez-Iglesias C, Calbó J, Blasco E, Pumarola M, Milán M, Guinovart JJ (2014) Neuronal glycogen synthesis contributes to physiological aging. Aging Cell 13:935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiura Y, Honda K, Kajimura M, Suematsu M (2014) Visualization and quantification of cerebral metabolic fluxes of glucose in awake mice. Proteomics 14:829–838

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson RA, Morton MM, Sagar SM, Sharp FR (1992) Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 51:451–461

    Article  CAS  PubMed  Google Scholar 

  • Takado Y, Knott G, Humbel BM, Escrig S, Masoodi M, Meibom A, Comment A (2015) Imaging liver and brain glycogen metabolism at the nanometer scale. Nanomedicine 11:239–245

    Article  CAS  PubMed  Google Scholar 

  • Takano T, He W, Han X, Wang F, Xu Q, Wang X, Oberheim Bush NA, Cruz N, Dienel GA, Nedergaard M (2014) Rapid manifestation of reactive astrogliosis in acute hippocampal brain slices. Glia 62:78–95

    Article  PubMed  Google Scholar 

  • Takeuchi T, Duszkiewicz AJ, Sonneborn A, Spooner PA, Yamasaki M, Watanabe M, Smith CC, Fernández G, Deisseroth K, Greene RW, Morris RGM (2016) Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537:357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takezawa Y, Baba O, Kohsaka S, Nakajima K (2015) Accumulation of glycogen in axotomized adult rat facial motoneurons. J Neurosci Res 93:913–921

    Article  CAS  PubMed  Google Scholar 

  • Testoni G, Duran J, García-Rocha M, Vilaplana F, Serrano AL, Sebastián D, López-Soldado I, Sullivan MA, Slebe F, Vilaseca M, Muñoz-Cánoves P, Guinovart JJ (2017) Lack of Glycogenin causes glycogen accumulation and muscle function impairment. Cell Metab 26:256–266.e4

    Article  CAS  PubMed  Google Scholar 

  • Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tu J, Cao B, Mu L, Yang X, Cong M, Ramkrishnan AS, Chan RHM, Wang L, Li Y (2017) Astrocytic l -lactate signaling facilitates amygdala-anterior cingulate cortex synchrony and decision making in rats. Cell Rep 21:2407–2418

    Article  CAS  PubMed  Google Scholar 

  • Wender R, Brown AM, Fern R, Swanson RA, Farrell K, Ransom BR (2000) Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. J Neurosci 20:6804–6810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28

    Article  CAS  PubMed  Google Scholar 

  • Wong-Riley MT, Welt C (1980) Histochemical changes in cytochrome oxidase of cortical barrels after vibrissal removal in neonatal and adult mice. Proc Natl Acad Sci U S A 77:2333–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Bergles DE, Nishiyama A (2007) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135:145–157

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the RIKEN Brain Science Institute, KAKENHI grants (26117520, 16H01888, 18H05150), and HFSP (RGP0036/2014). We thank members of the laboratory for comments on earlier versions of the manuscript. The authors declare no competing financial interests. SA is supported by the RIKEN IPA program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuki Oe or Hajime Hirase .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oe, Y., Akther, S., Hirase, H. (2019). Regional Distribution of Glycogen in the Mouse Brain Visualized by Immunohistochemistry. In: DiNuzzo, M., Schousboe, A. (eds) Brain Glycogen Metabolism. Advances in Neurobiology, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-27480-1_5

Download citation

Publish with us

Policies and ethics