Skip to main content

Advertisement

Log in

Microglial Cells Depletion Increases Inflammation and Modifies Microglial Phenotypes in an Animal Model of Severe Sepsis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Sepsis-associated encephalopathy is highly prevalent and has impact both in early and late morbidity and mortality. The mechanisms by which sepsis induces brain dysfunction include neuroinflammation, disrupted blood–brain barrier, oxidative stress, and microglial activation, but the cellular and molecular mechanisms involved in these events are not completely understood. Our objective was to determine the effects of microglial depletion in the early systemic and brain inflammatory response and its impact in phenotypes expression in an animal model of sepsis. Animals were subjected to CLP, and depletion of microglial cells was accomplished by administration of (Lipo)-encapsulated clodronate and microglial repopulation by doxycycline. Clod-lip treatment was effective in decreasing microglia density in the hippocampus of animals. Pro-inflammatory cytokines were increased in the CLP+PBS, and liposomes administration increased even further these cytokines mainly 7 days, suggesting that microglial depletion exacerbates both local and systemic inflammation. In contrast, repopulation with doxycycline was able to revert the cytokine levels in both serum and cerebral structures on day 7 and 14 after repopulation. There were no differences in the correlation between M1 and M2 markers by real-time PCR, but immunohistochemistry showed significant increase in CD11b expression in CLP+PBS with greater expression in CLP + liposomes in the hippocampus. These results suggest that the depletion of microglia during severe sepsis development could be associated with early exacerbation of brain and systemic inflammation and repopulation is able to revert this condition, once a rapid neurological recovery is noticed until 7 days after sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mazeraud A, Pascal Q, Verdonk F, Heming N, Chrétien F, Sharshar T (2016) Neuroanatomy and physiology of brain dysfunction in sepsis. Clin Chest Med 37(2):333–345

    PubMed  Google Scholar 

  2. Annane D, Sharshar T (2015) Cognitive decline after sepsis. Lancet Respir Med 3(1):61–69

    CAS  PubMed  Google Scholar 

  3. Widmann CN, Heneka MT (2014) Long-term cerebral consequences of sepsis. Lancet Neurol 13(6):630–636

    PubMed  Google Scholar 

  4. Bozza FA, D'Avila JC, Ritter C, Sonneville R, Sharshar T, Dal-Pizzol F (2013) Bioenergetics, mitochondrial dysfunction, and oxidative stress in the pathophysiology of septic encephalopathy. Shock 39(Suppl 1):10–16

    CAS  PubMed  Google Scholar 

  5. Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation 12:114

    PubMed  PubMed Central  Google Scholar 

  6. Hirbec H, Noristani HN, Perrin FE (2017) Microglia responses in acute and chronic neurological diseases: what microglia-specific transcriptomic studies taught (and did not teach) us. Front Aging Neurosci 9:227

    Google Scholar 

  7. Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23(9):1018–1027

    CAS  PubMed  Google Scholar 

  8. Li Q, Barres BA (2017) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18:225–242. https://doi.org/10.1038/nri.2017.125

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Min S, Xie F, Yang J, Li L, Chen J (2018) Glial cell-derived neurotrophic factor alleviates sepsis-induced neuromuscular dysfunction by decreasing the expression of γ- and α7-nicotinic acetylcholine receptors in an experimental rat model of neuromyopathy. J Biochem Biophys Res Commun 496(2):260–266

    CAS  Google Scholar 

  10. Lai AY, Todd KG (2006) Microglia in cerebral ischemia: molecular actions and interactions. Can J Physiol Pharmacol 84:49–59

    CAS  PubMed  Google Scholar 

  11. Lan X, Han X, Li Q, Yang QW, Wang J (2017) Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol 13(7):420–433

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ising C, Heneka MT (2018) Functional and structural damage of neurons by innate immune mechanisms during neurodegeneration. Cell Death Dis 9(2):120

    PubMed  PubMed Central  Google Scholar 

  13. Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD (2016) Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology 233(9):1637–1650

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19:987–991

    CAS  PubMed  Google Scholar 

  15. Liu Q, Jin WN, Liu Y, Shi K, Sun H, Zhang F, Zhang C, Gonzales RJ et al (2017) Brain ischemia suppresses immunity in the periphery and brain via different neurogenic innervations. Immunity 46(3):474–487

    CAS  PubMed  Google Scholar 

  16. Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596–2605

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kitamura Y, Takata K, Inden M, Tsuchiya D, Yanagisawa D, Nakata J, Taniguchi T (2004) Intracerebroventricular injection of microglia protects against focal brain ischemia. J Pharmacol Sci 94:203–206

    CAS  PubMed  Google Scholar 

  18. Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155

    PubMed  Google Scholar 

  19. Wan S, Cheng Y, Jin H, Guo D, Hua Y, Keep RF, Xi G (2016) Microglia activation and polarization after intracerebral hemorrhage in mice: the role of protease-activated receptor-1. Transl Stroke Res 7(6):478–487

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Perego C, Fumagalli S, Zanier ER, Carlino E, Panini N, Erba E, De Simoni MG (2016) Macrophages are essential for maintaining a M2 protective response early after ischemic brain injury. Neurobiol Dis 96:284–293

    CAS  PubMed  Google Scholar 

  21. Wang G, Zhang J, Hu X, Zhang L, Mao L, Jiang X, Liou AK, Leak RK et al (2013) Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab 33:1864–1874

    CAS  Google Scholar 

  22. Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M, David S (2014) TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83:1098–1116

    CAS  PubMed  Google Scholar 

  23. Boddaert J, Bielen K, Jongers B, Manocha E, Yperzeele L, Cras P, Pirici D, Kumar-Singh S (2018) CD8 signaling in microglia/macrophage M1 polarization in a rat model of cerebral ischemia. PLoS One 13(1):e0186937

    PubMed  PubMed Central  Google Scholar 

  24. Fumagalli S, Perego C, Ortolano F, De Simoni MG (2013) CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice. Glia 61(6):827–842

    PubMed  Google Scholar 

  25. Petersen MA, Dailey ME (2004) Diverse microglial motility behaviors during clearance of dead cells in hippocampal slices. Glia 46(2):195–206

    PubMed  Google Scholar 

  26. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318

    CAS  PubMed  Google Scholar 

  27. Michels M, Vieira AS, Vuolo F, Zapelini HG, Mendonça B, Mina F, Dominguini D, Steckert A et al (2014) The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain Behav Immun 43:54–59

    CAS  PubMed  Google Scholar 

  28. Sharshar T, Bozza F, Chrétien F (2014) Neuropathological processes in sepsis. Lancet Neurol 13(6):534–536

    PubMed  Google Scholar 

  29. Michels M, Sonai B, Dal-Pizzol F (2017) Polarization of microglia and its role in bacterial sepsis. J Neuroimmunol 303:90–98

    CAS  PubMed  Google Scholar 

  30. Michels M, Danielski LG, Dal-Pizzol F, Petronilho F (2014) Neuroinflammation: microglial activation during sepsis. Curr Neurovasc Res 11(3):262–267

    CAS  PubMed  Google Scholar 

  31. Michels M, Steckert AV, Quevedo J, Barichello T, Dal-Pizzol F (2015) Mechanisms of long-term cognitive dysfunction of sepsis: from blood-borne leukocytes to glial cells. Intensive Care Med Exp 3(1):30

    PubMed  PubMed Central  Google Scholar 

  32. Chen T, Chen C, Zhang Z, Zou Y, Peng M, Wang Y (2016) Toll-like receptor 4 knockout ameliorates neuroinflammation due to lung-brain interaction in mechanically ventilated mice. Brain Behav Immun 56:42–55

    CAS  PubMed  Google Scholar 

  33. Gonzalvo R, Martí-Sistac O, Blanch L, López-Aguilar J (2007) Bench-to-bedside review: brain-lung interaction in the critically ill a pending issue revisited . Crit Care 11(3): 216.

    PubMed  PubMed Central  Google Scholar 

  34. Reardon C (2016) Neuro-immune interactions in the cholinergic anti-inflammatory reflex. Immunol Lett 178:92–96

    CAS  PubMed  Google Scholar 

  35. Liu Z, Wang Y, Wang Y, Ning Q, Zhang Y, Gong C, Zhao W, Jing G et al (2016) Dexmedetomidine attenuates inflammatory reaction in the lung tissues of septic mice by activating cholinergic anti-inflammatory pathway. Int Immunopharmacol 35:210–216

    CAS  PubMed  Google Scholar 

  36. Wang YR, Mao XF, Wu HY, Wang YX (2018) Liposome-encapsulated clodronate specifically depletes spinal microglia and reduces initial neuropathic pain. Biochem Biophys Res Commun 499(3):499–505

    CAS  PubMed  Google Scholar 

  37. Fink MP, Heard SO (1990) Laboratory models of sepsis and septic shock. J Surg Res 49(2):186–196

    CAS  PubMed  Google Scholar 

  38. Faustino J, Wang X, Johnson CE, Klibanov A, Derugin N, Wendland MF, Vexler ZS (2011) Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci 31(36):12992–13001

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rice RA, Spangenberg EE, Yamate-Morgan H, Lee RJ, Arora RP, Hernandez MX, Tenner AJ, West BL et al (2015) Elimination of microglia improves functional outcomes following extensive neuronal loss in the hippocampus. J Neurosci 35(27):9977–9989

    CAS  PubMed  Google Scholar 

  40. Sanchez-Mejias E, Navarro V, Jimenez S, Sanchez-Mico M, Sanchez-Varo R, Nuñez-Diaz C, Trujillo-Estrada L, Davila JC et al (2016) Soluble phospho-tau from Alzheimer’s disease hippocampus drives microglial degeneration. Acta Neuropathol 132(6):897–916

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ragu-Varman D, Macedo-Mendoza M, Labrada-Moncada FE, Reyes-Ortega P, Morales T, Martínez-Torres A, Reyes-Haro D (2019) Anorexia increases microglial density and cytokine expression in the hippocampus of young female rats. Behav Brain Res 363:118–125

    CAS  PubMed  Google Scholar 

  42. Hug A, Dalpke A, Wieczorek N, Giese T, Lorenz A, Auffarth G, Liesz A, Veltkamp R (2009) Infarct volume is a major determiner of post-stroke immune cell function and susceptibility to infection. Stroke 40:3226–3232

    PubMed  Google Scholar 

  43. Wong CH, Jenne CN, Lee WY, Le’ger C, Kubes P (2011) Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334:101–105

    CAS  PubMed  Google Scholar 

  44. Andersson U, Tracey KJ (2012) Neural reflexes in inflammation and immunity. J Exp Med 209:1057–1068

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fu Y, Liu Q, Anrather J, Shi FD (2015) Immune interventions in stroke. Nat Rev Neurol 11:524–535

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Audebert HJ, Rott MM, Eck T, Haberl RL (2004) Systemic inflammatory response depends on initial stroke severity but is attenuated by successful thrombolysis. Stroke. 35(9):2128–2133

    PubMed  Google Scholar 

  47. Yoshimoto Y, Tanaka Y, Hoya K (2001) Acute systemic inflammatory response syndrome in subarachnoid hemorrhage. Stroke. 32(9):1989–1993

    CAS  PubMed  Google Scholar 

  48. Kalita J, Bastia J, Bhoi SK, Misra UK (2015) Systemic inflammatory response syndrome predicts severity of stroke and outcome. J Stroke Cerebrovasc Dis 24(7):1640–1648

    PubMed  Google Scholar 

  49. Laterza C, Wattananit S, Uoshima N, Ge R, Pekny R, Tornero D, Monni E, Lindvall O et al (2017) Monocyte depletion early after stroke promotes neurogenesis from endogenous neural stem cells in adult brain. Exp Neurol 297:129–137

    CAS  PubMed  Google Scholar 

  50. Neumann J, Riek-Burchardt M, Herz J, Doeppner TR, König R, Hütten H, Etemire E, Männ L et al (2015) Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol 129(2):259–277

    PubMed  Google Scholar 

  51. Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M et al (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6(7):e1000113

    PubMed  PubMed Central  Google Scholar 

  52. Jin WN, Shi SX, Li Z, Li M, Wood K, Gonzales RJ, Liu Q (2017) Depletion of microglia exacerbates postischemic inflammation and brain injury. J Cereb Blood Flow Metab 37(6):2224–2236

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jantzie LL, Todd KG (2010) Doxycycline inhibits proinflammatory cytokines but not acute cerebral cytogenesis after hypoxia-ischemia in neonatal rats. J Psychiatry Neurosci 35(1):20–32

    PubMed  PubMed Central  Google Scholar 

  54. Schwalm MT, Pasquali M, Miguel SP, Dos Santos JP, Vuolo F, Comim CM, Petronilho F, Quevedo J et al (2014) Acute brain inflammation and oxidative damage are related to long-term cognitive deficits and markers of neurodegeneration in sepsis-survivor rats. Mol Neurobiol 49(1):380–385

    PubMed  Google Scholar 

  55. Comim CM, Cassol OJ Jr, Constantino LS, Felisberto F, Petronilho F, Rezin GT, Scaini G, Daufenbach JF et al (2011) Alterations in inflammatory mediators, oxidative stress parameters and energetic metabolism in the brain of sepsis survivor rats. Neurochem Res 36(2):304–311

    PubMed  Google Scholar 

  56. Lazzarini M, Martin S, Mitkovski M, Vozari RR, Stühmer W, Bel ED (2013) Doxycycline restrains glia and confers neuroprotection in a 6-OHDA Parkinson model. Glia 61(7):1084–1100

    PubMed  Google Scholar 

  57. Santa-Cecília FV, Socias B, Ouidja MO, Sepulveda-Diaz JE, Acuña L, Silva RL, Michel PP, Del-Bel E et al (2016) Doxycycline suppresses microglial activation by inhibiting the p38 MAPK and NF-kB signaling pathways. Neurotox Res 29(4):447–459

    PubMed  Google Scholar 

  58. Rice RA, Pham J, Lee RJ, Najafi AR, West BL, Green KN (2015) Microglial repopulation resolves inflammation and promotes brain recovery after injury. Glia 65(6):931–944

    Google Scholar 

  59. Michels M, Danieslki LG, Vieira A, Florentino D, Dall'Igna D, Galant L, Sonai B, Vuolo F et al (2015) CD40-CD40 ligand pathway is a major component of acute neuroinflammation and contributes to long-term cognitive dysfunction after sepsis. Mol Med 21:219–226

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tanaka M, Ishihara Y, Mizuno S, Ishida A, Vogel CF, Tsuji M, Yamazaki T, Itoh K (2018) Progression of vasogenic edema induced by activated microglia under permanent middle cerebral artery occlusion. Biochem Biophys Res Commun 496:582–587

    CAS  PubMed  Google Scholar 

  61. Lu Y, Xiao G, Luo W (2016) Minocycline suppresses NLRP3 inflammasome activation in experimental ischemic stroke. Neuroimmunomodulation 23(4):230–238

    CAS  PubMed  Google Scholar 

  62. Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7(4):354–365

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Paolicelli RC, Ferretti MT (2017) Function and dysfunction of microglia during brain development: consequences for synapses and neural circuits. Front Synaptic Neurosci 10(9):9

    Google Scholar 

  64. Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173(4):692–702

    CAS  PubMed  Google Scholar 

  65. Lund H, Pieber M, Harris RA (2017) Lessons learned about neurodegeneration from microglia and monocyte depletion studies. Front Aging Neurosci 9:234

    PubMed  PubMed Central  Google Scholar 

  66. Fouda AY, Newsome AS, Spellicy S, Waller JL, Zhi W, Hess DC, Ergul A, Edwards DJ et al (2017) Minocycline in acute cerebral hemorrhage: an early phase randomized trial. Stroke 48(10):2885–2887

  67. Esalatmanesh S, Abrishami Z, Zeinoddini A, Rahiminejad F, Sadeghi M, Najarzadegan MR, Shalbafan MR, Akhondzadeh S (2016) Minocycline combination therapy with fluvoxamine in moderate-to-severe obsessive-compulsive disorder: a placebo-controlled, double-blind, randomized trial. Psychiatry Clin Neurosci 70(11):517–526

    CAS  PubMed  Google Scholar 

  68. Husain MI, Chaudhry IB, Rahman RR, Hamirani MM, Qurashi I, Khoso AB, Deakin JF, Husain N et al (2015) Minocycline as an adjunct for treatment-resistant depressive symptoms: study protocol for a pilot randomised controlled trial. Trials 16:410

  69. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82(2):380–397

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Fleming SD, Leenen PJ, Freed JH, Campbell PA (1999) Surface interleukin-10 inhibits listericidal activity by primary macrophages. J Leukoc Biol 66(6):961–967

    CAS  PubMed  Google Scholar 

  71. Fleming SD, Campbell PA (1996) Macrophages have cell surface IL-10 that regulates macrophage bactericidal activity. J Immunol 156(3):1143–1150

    CAS  PubMed  Google Scholar 

  72. Gonzalez P, Burgaya F, Acarin L, Peluffo H, Castellano B, Gonzalez B (2009) Interleukin-10 and interleukin-10 receptor-I are upregulated in glial cells after an excitotoxic injury to the postnatal rat brain. J Neuropathol Exp Neurol 68(4):391–403

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge CAPES - 001, CNPQ, FAPESC, and UNESC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Dal-Pizzol.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michels, M., Ávila, P., Pescador, B. et al. Microglial Cells Depletion Increases Inflammation and Modifies Microglial Phenotypes in an Animal Model of Severe Sepsis. Mol Neurobiol 56, 7296–7304 (2019). https://doi.org/10.1007/s12035-019-1606-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1606-2

Keywords

Navigation