Skip to main content
Log in

Ferulic Acid Rescues LPS-Induced Neurotoxicity via Modulation of the TLR4 Receptor in the Mouse Hippocampus

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Microglia play a crucial role in the inflammatory brain response to infection. However, overactivation of microglia is neurotoxic. Toll-like receptor 4 (TLR4) is involved in microglial activation via lipopolysaccharide (LPS), which triggers a variety of cytotoxic pro-inflammatory markers that produce deleterious effects on neuronal cells. Ferulic acid (FA) is a phenolic compound that exerts antioxidant and anti-inflammatory effects in neurodegenerative disease. However, the manner in which FA inhibits neuroinflammation-induced neurodegeneration is poorly understood. Therefore, we investigated the anti-inflammatory effects of FA against LPS-induced neuroinflammation in the mouse brain. First, we provide evidence that FA interferes with TLR4 interaction sites, which are required for the activation of microglia-induced neuroinflammation, and further examined the potential mechanism of its neuroprotective effects in the mouse hippocampus using molecular docking simulation and immunoblot analysis. Our results indicated that FA treatment inhibited glial cell activation, p-JNK, p-NFKB, and downstream signaling molecules, such as iNOS, COX-2, TNF-α, and IL-1β, in the mouse hippocampus and BV2 microglial cells. FA treatment strongly inhibited mitochondrial apoptotic signaling molecules, such as Bax, cytochrome C, caspase-3, and PARP-1, and reversed deregulated synaptic proteins, including PSD-95, synaptophysin, SNAP-25, and SNAP-23, and synaptic dysfunction in LPS-treated mice. These findings demonstrated that FA treatment interfered with the TLR4/MD2 complex binding site, which is crucial for evoking neuroinflammation via microglia activation and inhibited NFKB likely via a JNK-dependent mechanism, which suggests a therapeutic implication for neuroinflammation-induced neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CNS:

Central nervous system

PBS:

Phosphate-buffered saline

NFKB:

Nuclear factor kappa B

TNF-α:

Tumor necrosis factor-alpha

iNOS:

Inducible nitric oxide synthase

COX-2:

Cyclooxygenase-2

p-JNK:

Phospho-C-jun N-terminal Kinase

PARP-1:

Poly[ADP-ribose] polymerase 1

TRITC:

Tetramethylrhodamine isothiocyanate

FITC:

Fluorescein isothiocyanate

DG:

Dentate gyrus

CA1:

Cornu Ammonis

PSD-95:

Post-synaptic density-95

SNAP23:

Synaptosomal-associated protein 23

SD:

Standard deviation

i.p.:

Intraperitoneally

NAOH:

Sodium hydroxide

IKK:

IkB kinases

Iba-1:

Ionized calcium-binding adapter molecule 1

GFAP:

Glial fibrillary acidic protein

KMNO4:

Potassium permanganate

References

  1. Jha MK, Jeon S, Suk K (2012) Glia as a link between neuroinflammation and neuropathic pain. Immune Netw 12(2):41–47

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lee YJ, Choi DY, Choi IS, Kim KH, Kim YH, Kim HM, Lee K, Cho WG et al (2012) Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models. J Neuroinflammation 9:35. https://doi.org/10.1186/1742-2094-9-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dohi K, Ohtaki H, Nakamachi T, Yofu S, Satoh K, Miyamoto K, Song D, Tsunawaki S et al (2010) Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation 7:41. https://doi.org/10.1186/1742-2094-7-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang X, Wang C, Wang J, Zhao S, Zhang K, Wang J, Zhang W, Wu C et al (2014) Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-kappaB, MAPKs and Akt signaling pathways. Neuropharmacology 79:642–656. https://doi.org/10.1016/j.neuropharm.2014.01.022

    Article  CAS  PubMed  Google Scholar 

  5. Yuan L, Liu S, Bai X, Gao Y, Liu G, Wang X, Liu D, Li T et al (2016) Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J Neuroinflammation 13(1):77. https://doi.org/10.1186/s12974-016-0541-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carrasco E, Casper D, Werner P (2007) PGE(2) receptor EP1 renders dopaminergic neurons selectively vulnerable to low-level oxidative stress and direct PGE(2) neurotoxicity. J Neurosci Res 85(14):3109–3117

    Article  CAS  PubMed  Google Scholar 

  7. Jara JH, Singh BB, Floden AM, Combs CK (2007) Tumor necrosis factor alpha stimulates NMDA receptor activity in mouse cortical neurons resulting in ERK-dependent death. J Neurochem 100(5):1407–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ et al (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22(7):2478–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. J Exp Med 189(11):1777–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheong MH, Lee SR, Yoo HS, Jeong JW, Kim GY, Kim WJ, Jung IC, Choi YH (2007) Anti-inflammatory effects of Polygala tenuifolia root through inhibition of NF-kappaB activation in lipopolysaccharide-induced BV2 microglial cells. J Ethnopharmacol 37(3):1402–1408. https://doi.org/10.1016/j.jep.2011.08.008

    Article  Google Scholar 

  11. Xie Z, Smith CJ, Van Eldik LJ (2004) Activated glia induce neuron death via MAP kinase signaling pathways involving JNK and p38. Glia 45(2):170–179

    Article  PubMed  Google Scholar 

  12. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934. https://doi.org/10.1016/j.cell.2010.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26(3):349–354

    Article  CAS  PubMed  Google Scholar 

  14. Van Eldik LJ, Thompson WL, Ralay Ranaivo H, Behanna HA, Martin Watterson D (2007) Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases: function-based and target-based discovery approaches. Int Rev Neurobiol 82:277–296

    Article  PubMed  Google Scholar 

  15. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25(2):181–213

    Article  CAS  PubMed  Google Scholar 

  16. Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van Eldik LJ (2011) Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Abeta). J Neuroinflammation 8:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilms H, Sievers J, Rickert U, Rostami-Yazdi M, Mrowietz U, Lucius R (2010) Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1beta, TNF-alpha and IL-6 in an in-vitro model of brain inflammation. J Neuroinflammation 7:30. https://doi.org/10.1186/1742-2094-7-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi Y, Lee MK, Lim SY, Sung SH, Kim YC (2009) Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1beta by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells. Br J Pharmacol 156(6):933–940. https://doi.org/10.1111/j.1476-5381.2009.00022.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang MJ, Huang HY, Chen WF, Chang HF, Kuo JS (2010) Glycogen synthase kinase-3beta inactivation inhibits tumor necrosis factor-alpha production in microglia by modulating nuclear factor kappaB and MLK3/JNK signaling cascades. J Neuroinflammation 7:99. https://doi.org/10.1186/1742-2094-7-99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jang SI, Kim HJ, Kim YJ, Jeong SI, You YO (2006) Tanshinone IIA inhibits LPS-induced NF-kappaB activation in RAW 264.7 cells: possible involvement of the NIK-IKK, ERK1/2, p38 and JNK pathways. Eur J Pharmacol 542(1–3):1–7

    Article  CAS  PubMed  Google Scholar 

  21. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271

    Article  CAS  PubMed  Google Scholar 

  22. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69

    Article  CAS  PubMed  Google Scholar 

  23. Zeng KW, Fu H, Liu GX, Wang XM (2010) Icariin attenuates lipopolysaccharide-induced microglial activation and resultant death of neurons by inhibiting TAK1/IKK/NF-kappaB and JNK/p38 MAPK pathways. Int Immunopharmacol 10(6):668–678. https://doi.org/10.1016/j.intimp.2010.03.010

    Article  CAS  PubMed  Google Scholar 

  24. Barone E, Calabrese V, Mancuso C (2009) Ferulic acid and its therapeutic potential as a hormetin for age-related diseases. Biogerontology 10(2):97–108

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Z, Moghadasian MH (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem 109(4):691–702. https://doi.org/10.1016/j.foodchem.2008.02.039

    Article  CAS  PubMed  Google Scholar 

  26. Cheng CY, Su SY, Tang NY, Ho TY, Chiang SY, Hsieh CL (2008) Ferulic acid provides neuroprotection against oxidative stress-related apoptosis after cerebral ischemia/reperfusion injury by inhibiting ICAM-1 mRNA expression in rats. Brain Res 1209:136–150

    Article  CAS  PubMed  Google Scholar 

  27. Kim HS, Cho JY, Kim DH, Yan JJ, Lee HK, Suh HW, Song DK (2004) Inhibitory effects of long-term administration of ferulic acid on microglial activation induced by intracerebroventricular injection of beta-amyloid peptide (1-42) in mice. Biol Pharm Bull 27:120–121

    Article  CAS  PubMed  Google Scholar 

  28. Sultana R (2012) Ferulic acid ethyl ester as a potential therapy in neurodegenerative disorders. Biochim Biophys Acta 1822(5):748–752. https://doi.org/10.1016/j.bbadis.2011.10.015

    Article  CAS  PubMed  Google Scholar 

  29. Yan JJ, Cho JY, Kim HS, Kim KL, Jung JS, Huh SO, Suh HW, Kim YH et al (2001) Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Pharmacol 133(1):89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shah SA, Yoon GH, Chung SS, Abid MN, Kim TH, Lee HY, Kim MO (2017) Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol Psychiatry 22(3):407–416

    Article  CAS  PubMed  Google Scholar 

  31. Shah SA, Amin FU, Khan M, Abid MN, Rehman SU, Kim TH, Kim MW, Kim MO (2016) Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J Neuroinflammation 13(1):286

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rehman SU, Shah SA, Ali T, Chung JI, Kim MO (2016) Anthocyanins reversed D-galactose-induced oxidative stress and Neuroinflammation mediated cognitive impairment in adult rats. Mol Neurobiol 54(1):255–271

    Article  PubMed  Google Scholar 

  33. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using GOLD. Proteins 52(4):609–623

    Article  CAS  PubMed  Google Scholar 

  34. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbayar P, Matsushima N et al (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130(5):906–917

    Article  CAS  PubMed  Google Scholar 

  35. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acid Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park BS, Song DH, Kim BS, Lee H, Lee JO (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458:1191–1195

    Article  CAS  PubMed  Google Scholar 

  37. Han J., Kim H. J., Lee S. C., Hong S., Park K., Jeon Y. H., Kim D., Cheong H. K., Kim H. S Structure-based rational design of a Toll-like receptor 4 (TLR4) decoy receptor with high binding affinity for a target protein. PloS ONE 7(2):e30929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Y, Han L, Liu Z, Wang R (2014) Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. J Chem Inf Model 54(6):1717–1736. https://doi.org/10.1021/ci500081m

    Article  CAS  PubMed  Google Scholar 

  39. Ni H, Zhao W, Kong X, Li H, Ouyang J (2014) Celastrol inhibits lipopolysaccharide-induced angiogenesis by suppressing TLR4-triggered nuclear factor-kappa B activation. Acta Haematol 131(2):102–111

    Article  CAS  PubMed  Google Scholar 

  40. Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305

    Article  CAS  PubMed  Google Scholar 

  41. Svajger U, Brus B, Turk S, Sova M, Hodnik V, Anderluh G, Gobec S (2013) Novel toll-like receptor 4 (TLR4) antagonists identified by structure- and ligand-based virtual screening. Eur J Med Chem 70:393–399. https://doi.org/10.1016/j.ejmech.2013.10.019

    Article  CAS  PubMed  Google Scholar 

  42. Verstak B, Nagpal K, Bottomley SP, Golenbock DT, Hertzog PJ, Mansell A (2009) MyD88 adapter-like (mal)/TIRAP interaction with TRAF6 is critical for TLR2- and TLR4-mediated NF-kappaB proinflammatory responses. J Biol Chem 284(36):24192–24203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang L, Wu C, Zhao S, Yuan D, Lian G, Wang X, Wang L, Yang J (2010) Demethoxycurcumin, a natural derivative of curcumin attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-kappaB signaling pathways in N9 microglia induced by lipopolysaccharide. Int Immunopharmacol 10(3):331–338. https://doi.org/10.1016/j.intimp.2009.12.004

    Article  CAS  PubMed  Google Scholar 

  44. Roy A, Jana A, Yatish K, Freidt MB, Fung YK, Martinson JA, Pahan K (2008) Reactive oxygen species up-regulate CD11b in microglia via nitric oxide: implications for neurodegenerative diseases. Free Radic Biol Med 45(5):686–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Debatin KM, Poncet D, Kroemer G (2002) Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 21(57):8786–8803

    Article  CAS  PubMed  Google Scholar 

  46. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41(2–3):242–247

    Article  CAS  PubMed  Google Scholar 

  47. Li D, Li X, Wu J, Li J, Zhang L, Xiong T, Tang J, Qu Y et al (2015) Involvement of the JNK/FOXO3a/Bim pathway in neuronal apoptosis after hypoxic-ischemic brain damage in neonatal rats. PLoS One 10(7):e0132998. https://doi.org/10.1371/journal.pone.0132998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fruhauf PK, Ineu RP, Tomazi L, Duarte T, Mello CF, Rubin MA (2015) Spermine reverses lipopolysaccharide-induced memory deficit in mice. J Neuroinflammation 12:3. https://doi.org/10.1186/s12974-014-0220-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakajima K, Kohsaka S (1998) Functional roles of microglia in the central nervous system. Hum Cell 11(3):141–155

    CAS  PubMed  Google Scholar 

  50. Czerniawski J, Miyashita T, Lewandowski G, Guzowski JF (2015) Systemic lipopolysaccharide administration impairs retrieval of context-object discrimination, but not spatial, memory: evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation. Brain Behav Immun 44:159–166. https://doi.org/10.1016/j.bbi.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  51. Gabellec MM, Griffais R, Fillion G, Haour F (1995) Expression of interleukin 1 alpha, interleukin 1 beta and interleukin 1 receptor antagonist mRNA in mouse brain: regulation by bacterial lipopolysaccharide (LPS) treatment. Brain Res Mol Brain Res 31(1–2):122–130

    Article  CAS  PubMed  Google Scholar 

  52. Badshah H, Ali T, Rehman S-U, Faiz-ul A, Ullah F, Kim TH, Kim MO (2016) Protective effect of lupeol against lipopolysaccharide-induced neuroinflammation via the p38/c-Jun N-terminal kinase pathway in the adult mouse brain. J Neuroimmune Pharmacol 11:48–60

    Article  PubMed  Google Scholar 

  53. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16(25):2766–2778

    Article  CAS  PubMed  Google Scholar 

  54. Dai JN, Zong Y, Zhong LM, Li YM, Zhang W, Bian LG, Ai QL, Liu YD et al (2011) Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. PLoS One 6(7):e21891. https://doi.org/10.1371/journal.pone.0021891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Aravalli RN, Peterson PK, Lokensgard JR (2007) Toll-like receptors in defense and damage of the central nervous system. J NeuroImmune Pharmacol 2(4):297–312

    Article  PubMed  Google Scholar 

  56. Yoon HM, Jang KJ, Han MS, Jeong JW, Kim GY, Lee JH, Choi YH (2013) Ganoderma lucidum ethanol extract inhibits the inflammatory response by suppressing the NF-kappaB and toll-like receptor pathways in lipopolysaccharide-stimulated BV2 microglial cells. Exp Ther Med 5(3):957–963

    Article  PubMed  PubMed Central  Google Scholar 

  57. Doyle SL, O'Neill LA (2006) Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity. Biochem Pharmacol 72(9):1102–1113

    Article  CAS  PubMed  Google Scholar 

  58. Liu S, Kielian T (2009) Microglial activation by Citrobacter koseri is mediated by TLR4- and MyD88-dependent pathways. J Immunol 183(9):5537–5547. https://doi.org/10.4049/jimmunol.0900083

    Article  CAS  PubMed  Google Scholar 

  59. Mori T, Koyama N, Guillot-Sestier MV, Tan J, Town T (2013) Ferulic acid is a nutraceutical beta-secretase modulator that improves behavioral impairment and alzheimer-like pathology in transgenic mice. PLoS One 8(2):e55774. https://doi.org/10.1371/journal.pone.0055774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuper C, Beck FX, Neuhofer W (2012) Toll-like receptor 4 activates NF-kappaB and MAP kinase pathways to regulate expression of proinflammatory COX-2 in renal medullary collecting duct cells. Am J Physiol Renal Physiol 302(1):F38–F46. https://doi.org/10.1152/ajprenal.00590.2010

    Article  CAS  PubMed  Google Scholar 

  61. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8(1):49–62

    Article  CAS  PubMed  Google Scholar 

  62. Lampiasi N, Montana G (2016) The molecular events behind ferulic acid mediated modulation of IL-6 expression in LPS-activated Raw 264.7 cells. Immunobiology 221(3):486–493

    Article  CAS  PubMed  Google Scholar 

  63. Koshiguchi M, Komazaki H, Hirai S, Egashira Y (2017) Ferulic acid suppresses expression of tryptophan metabolic key enzyme indoleamine 2, 3-dioxygenase via NFκB and p38 MAPK in lipopolysaccharide-stimulated microglial cells. Biosci Biotechnol Biochem 81(5):966–971. https://doi.org/10.1080/09168451.2016.1274636

    Article  CAS  PubMed  Google Scholar 

  64. Gatheral T, Reed DM, Moreno L, Gough PJ, Votta BJ, Sehon CA, Rickard DJ, Bertin J et al (2015) A key role for the endothelium in NOD1 mediated vascular inflammation: comparison to TLR4 responses. PLoS One 7(8):e42386. https://doi.org/10.1371/journal.pone.0042386

    Article  CAS  Google Scholar 

  65. Kim IT, Ryu S, Shin JS, Choi JH, Park HJ, Lee KT (2012) Euscaphic acid isolated from roots of Rosa rugosa inhibits LPS-induced inflammatory responses via TLR4-mediated NF-κB inactivation in RAW 264.7 macrophages. J Cell Biochem 113(6):1936–1946. https://doi.org/10.1002/jcb.24062

    Article  CAS  PubMed  Google Scholar 

  66. Nikseresht S, Khodagholi F, Nategh M, Dargahi L (2015) RIP1 inhibition rescues from LPS-induced RIP3-mediated programmed cell death, distributed energy metabolism and spatial memory impairment. J Mol Neurosci 57(2):219–230. https://doi.org/10.1007/s12031-015-0609-3

    Article  CAS  PubMed  Google Scholar 

  67. Santhanasabapathy R, Sudhandiran G (2015) Farnesol attenuates lipopolysaccharide-induced neurodegeneration in Swiss albino mice by regulating intrinsic apoptotic cascade. Brain Res 1620:42–56. https://doi.org/10.1016/j.brainres.2015.04.043

    Article  CAS  PubMed  Google Scholar 

  68. Sorce S, Krause KH (2009) NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 11(10):2481–2504. https://doi.org/10.1089/ARS.2009.2578

    Article  CAS  PubMed  Google Scholar 

  69. Pan XD, Chen XC, Zhu YG, Zhang J, Huang TW, Chen LM, Ye QY, Huang HP (2008) Neuroprotective role of tripchlorolide on inflammatory neurotoxicity induced by lipopolysaccharide-activated microglia. Biochem Pharmacol 76(3):362–372. https://doi.org/10.1016/j.bcp.2008.05.018

    Article  CAS  PubMed  Google Scholar 

  70. Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R (2003) P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer’s disease. J Biol Chem 278(15):13309–13317

    Article  CAS  PubMed  Google Scholar 

  71. Catino S, Paciello F, Miceli F, Rolesi R, Troiani D, Calabrese V, Santangelo R, Mancuso C (2015) Ferulic acid regulates the Nrf2/heme oxygenase-1 system and counteracts trimethyltin-induced neuronal damage in the human neuroblastoma cell line SH-SY5Y. Front Pharmacol 6:305. https://doi.org/10.3389/fphar.2015.00305

    Article  CAS  PubMed  Google Scholar 

  72. Shen Y, Zhang H, Wang L, Qian H, Qi Y, Miao X, Cheng L, Qi X (2016) Protective effect of ferulic acid against 2,2′-azobis(2-amidinopropane) dihydrochloride-induced oxidative stress in PC12 cells. Cell Mol Biol (Noisy-le-grand) 62(1):109–116

    CAS  Google Scholar 

  73. Tsai FS, Wu LY, Yang SE, Cheng HY, Tsai CC, Wu CR, Lin LW (2015) Ferulic acid reverses the cognitive dysfunction caused by amyloid beta peptide 1-40 through anti-oxidant activity and cholinergic activation in rats. Am J Chin Med 43(2):319–335. https://doi.org/10.1142/S0192415X15500214

    Article  CAS  PubMed  Google Scholar 

  74. Reader BF, Jarrett BL, McKim DB, Wohleb ES, Godbout JP, Sheridan JF (2015) Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety. Neuroscience 289:429–442. https://doi.org/10.1016/j.neuroscience.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  75. Terrando N, Monaco C, Ma D, Foxwell BM, Feldmann M, Maze M (2010) Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A 107(47):20518–20522. https://doi.org/10.1073/pnas.1014557107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research work was supported by the Brain Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT (2016M3C7A1904391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeong Ok Kim.

Ethics declarations

All the experiments and animal experimental procedures were approved (Approval ID 125) by the animal ethics committee (IACUC) of the Division of Life Science, Department of Biology, Gyeongsang National University, Republic of South Korea. All the animals were carefully handled and acclimatized for 2 weeks before starting the experimental procedure as according to the animal ethics committee (IACUC) of the Division of Life Science, Department of Biology, Gyeongsang National University, Republic of South Korea.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 633 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, S.U., Ali, T., Alam, S.I. et al. Ferulic Acid Rescues LPS-Induced Neurotoxicity via Modulation of the TLR4 Receptor in the Mouse Hippocampus. Mol Neurobiol 56, 2774–2790 (2019). https://doi.org/10.1007/s12035-018-1280-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1280-9

Keywords

Navigation