Skip to main content

Advertisement

Log in

Isoliquiritigenin Reduces LPS-Induced Inflammation by Preventing Mitochondrial Fission in BV-2 Microglial Cells

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Excessive microglial cell activation in the brain can lead to the production of various neurotoxic factors (e.g., pro-inflammatory cytokines, nitric oxide) which can, in turn, initiate neurodegenerative processes. Recent research has been reported that mitochondrial dynamics regulate the inflammatory response of lipopolysaccharide (LPS). Isoliquiritigenin (ISL) is a compound found in Glycyrrhizae radix with anti-inflammatory and antioxidant properties. In this study, we investigated the function of ISL on the LPS-induced pro-inflammatory response in BV-2 microglial cells. We showed that ISL reduced the LPS-induced increase in pro-inflammatory mediators (e.g., nitric oxide and pro-inflammatory cytokines) via the inhibition of ERK/p38/NF-κB activation and the generation of reactive oxygen species (ROS). Furthermore, ISL inhibited the excessive mitochondrial fission induced by LPS, regulating mitochondrial ROS generation and pro-inflammatory response by suppressing the calcium/calcineurin pathway to dephosphorylate Drp1 at the serine 637 residue. Interestingly, the ISL pretreatment reduced the number of apoptotic cells and levels of cleaved caspase3/PARP, compared to LPS-treated cells. Our findings suggested that ISL ameliorated the pro-inflammatory response of microglia by inhibiting dephosphorylation of Drp1 (Ser637)-dependent mitochondrial fission. This study provides the first evidence for the effects of ISL against LPS-induced inflammatory response related and its link to mitochondrial fission and the calcium/calcineurin pathway. Consequently, we also identified the protective effects of ISL against LPS-induced microglial apoptosis, highlighting the pharmacological role of ISL in microglial inflammation-mediated neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang, I., S.J. Han, G. Kaur, C. Crane, and A.T. Parsa. 2010. The role of microglia in central nervous system immunity and glioma immunology. Journal of Clinical Neuroscience 17: 6–10.

    PubMed  Google Scholar 

  2. Streit, W.J., J.R. Conde, S.E. Fendrick, B.E. Flanary, and C.L. Mariani. 2005. Role of microglia in the central nervous system’s immune response. Neurological Research 27: 685–691.

    PubMed  Google Scholar 

  3. Liu, B., K. Wang, H.M. Gao, B. Mandavilli, J.Y. Wang, and J.S. Hong. 2001. Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. Journal of Neurochemistry 77: 182–189.

    PubMed  CAS  Google Scholar 

  4. Mrak, R.E. 2012. Microglia in Alzheimer brain: a neuropathological perspective. International Journal of Alzheimer’s Disease 2012: 165021.

    PubMed  PubMed Central  Google Scholar 

  5. Imamura, K., M. Sawada, N. Ozaki, H. Naito, N. Iwata, R. Ishihara, T. Takeuchi, and H. Shibayama. 2001. Activation mechanism of brain microglia in patients with diffuse neurofibrillary tangles with calcification: a comparison with Alzheimer disease. Alzheimer Disease and Associated Disorders 15: 45–50.

    PubMed  CAS  Google Scholar 

  6. Zeng, J., Y. Chen, R. Ding, L. Feng, Z. Fu, S. Yang, X. Deng, Z. Xie, and S. Zheng. 2017. Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-kappaB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. Journal of Neuroinflammation 14: 119.

    PubMed  PubMed Central  Google Scholar 

  7. Wu, C.H., H.Y. Chen, C.W. Wang, T.M. Shieh, T.C. Huang, L.C. Lin, K.L. Wang, and S.M. Hsia. 2016. Isoliquiritigenin induces apoptosis and autophagy and inhibits endometrial cancer growth in mice. Oncotarget 7: 73432–73447.

    PubMed  PubMed Central  Google Scholar 

  8. Patricia Moreno-Londono, A., C. Bello-Alvarez, and J. Pedraza-Chaverri. 2017. Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food and Chemical Toxicology 109: 143–154.

    PubMed  CAS  Google Scholar 

  9. Kim, J.Y., S.J. Park, K.J. Yun, Y.W. Cho, H.J. Park, and K.T. Lee. 2008. Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-kappaB in RAW 264.7 macrophages. European Journal of Pharmacology 584: 175–184.

    PubMed  CAS  Google Scholar 

  10. Szabadkai, G., A.M. Simoni, K. Bianchi, D. De Stefani, S. Leo, M.R. Wieckowski, et al. 1763. Mitochondrial dynamics and Ca2+ signaling. Biochimica et Biophysica Acta 2006: 442–449.

    Google Scholar 

  11. Bertero, E., and C. Maack. 2018. Calcium signaling and reactive oxygen species in mitochondria. Circulation Research 122: 1460–1478.

    PubMed  CAS  Google Scholar 

  12. Murphy, M.P. 2013. Mitochondrial dysfunction indirectly elevates ROS production by the endoplasmic reticulum. Cell Metabolism 18: 145–146.

    PubMed  CAS  Google Scholar 

  13. Newsholme, P., V.F. Cruzat, K.N. Keane, R. Carlessi, and P.I. de Bittencourt Jr. 2016. Molecular mechanisms of ROS production and oxidative stress in diabetes. The Biochemical Journal 473: 4527–4550.

    PubMed  CAS  Google Scholar 

  14. Ding, X., M. Zhang, R. Gu, G. Xu, and H. Wu. 2017. Activated microglia induce the production of reactive oxygen species and promote apoptosis of co-cultured retinal microvascular pericytes. Graefe's Archive for Clinical and Experimental Ophthalmology 255: 777–788.

    PubMed  CAS  Google Scholar 

  15. Kim, E.K., and E.J. Choi. 1802. Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta 2010: 396–405.

    Google Scholar 

  16. Park, J., J.S. Min, B. Kim, U.B. Chae, J.W. Yun, M.S. Choi, I.K. Kong, K.T. Chang, and D.S. Lee. 2015. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-kappaB pathways. Neuroscience Letters 584: 191–196.

    PubMed  CAS  Google Scholar 

  17. Kasahara, E., A. Sekiyama, M. Hori, K. Hara, N. Takahashi, M. Konishi, E.F. Sato, S. Matsumoto, H. Okamura, and M. Inoue. 2011. Mitochondrial density contributes to the immune response of macrophages to lipopolysaccharide via the MAPK pathway. FEBS Letters 585: 2263–2268.

    PubMed  CAS  Google Scholar 

  18. Westermann, B. 2010. Mitochondrial fusion and fission in cell life and death. Nature Reviews. Molecular Cell Biology 11: 872–884.

    PubMed  CAS  Google Scholar 

  19. Wang, X., B. Su, H.G. Lee, X. Li, G. Perry, M.A. Smith, and X. Zhu. 2009. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. The Journal of Neuroscience 29: 9090–9103.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Knott, A.B., G. Perkins, R. Schwarzenbacher, and E. Bossy-Wetzel. 2008. Mitochondrial fragmentation in neurodegeneration. Nature Reviews. Neuroscience 9: 505–518.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Park, J., H. Choi, J.S. Min, S.J. Park, J.H. Kim, H.J. Park, B. Kim, J.I. Chae, M. Yim, and D.S. Lee. 2013. Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. Journal of Neurochemistry 127: 221–232.

    PubMed  CAS  Google Scholar 

  22. Lee, D.G., J.S. Min, H.S. Lee, and D.S. Lee. 2018. Isoliquiritigenin attenuates glutamate-induced mitochondrial fission via calcineurin-mediated Drp1 dephosphorylation in HT22 hippocampal neuron cells. Neurotoxicology 68: 133–141.

    PubMed  CAS  Google Scholar 

  23. Zhang, X., P. Zhu, X. Zhang, Y. Ma, W. Li, J.M. Chen, et al. 2013. Natural antioxidant-isoliquiritigenin ameliorates contractile dysfunction of hypoxic cardiomyocytes via AMPK signaling pathway. Mediators of Inflammation 2013: 390890.

    PubMed  PubMed Central  Google Scholar 

  24. Yang, E.J., J.S. Min, H.Y. Ku, H.S. Choi, M.K. Park, M.K. Kim, K.S. Song, and D.S. Lee. 2012. Isoliquiritigenin isolated from Glycyrrhiza uralensis protects neuronal cells against glutamate-induced mitochondrial dysfunction. Biochemical and Biophysical Research Communications 421: 658–664.

    PubMed  CAS  Google Scholar 

  25. Vijitruth, R., M. Liu, D.Y. Choi, X.V. Nguyen, R.L. Hunter, and G. Bing. 2006. Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson's disease. Journal of Neuroinflammation 3: 6.

    PubMed  PubMed Central  Google Scholar 

  26. Sierra, A., J. Navascues, M.A. Cuadros, R. Calvente, D. Martin-Oliva, R.M. Ferrer-Martin, et al. 2014. Expression of inducible nitric oxide synthase (iNOS) in microglia of the developing quail retina. PLoS One 9: e106048.

    PubMed  PubMed Central  Google Scholar 

  27. Kaminska, B., A. Gozdz, M. Zawadzka, A. Ellert-Miklaszewska, and M. Lipko. 2009. MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Rec (Hoboken) 292: 1902–1913.

    CAS  Google Scholar 

  28. Bachstetter, A.D., B. Xing, L. de Almeida, E.R. Dimayuga, D.M. Watterson, and L.J. Van Eldik. 2011. Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Abeta). Journal of Neuroinflammation 8: 79.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Distelmaier, F., F. Valsecchi, M. Forkink, S. van Emst-de Vries, H.G. Swarts, R.J. Rodenburg, et al. 2012. Trolox-sensitive reactive oxygen species regulate mitochondrial morphology, oxidative phosphorylation and cytosolic calcium handling in healthy cells. Antioxidants & Redox Signaling 17: 1657–1669.

    CAS  Google Scholar 

  30. Cereghetti, G.M., A. Stangherlin, O. Martins de Brito, C.R. Chang, C. Blackstone, P. Bernardi, et al. 2008. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proceedings of the National Academy of Sciences of the United States of America 105: 15803–15808.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Youle, R.J., and M. Karbowski. 2005. Mitochondrial fission in apoptosis. Nature Reviews. Molecular Cell Biology 6: 657–663.

    PubMed  CAS  Google Scholar 

  32. Bossy-Wetzel, E., M.J. Barsoum, A. Godzik, R. Schwarzenbacher, and S.A. Lipton. 2003. Mitochondrial fission in apoptosis, neurodegeneration and aging. Current Opinion in Cell Biology 15: 706–716.

    PubMed  CAS  Google Scholar 

  33. Dheen, S.T., C. Kaur, and E.A. Ling. 2007. Microglial activation and its implications in the brain diseases. Current Medicinal Chemistry 14: 1189–1197.

    PubMed  CAS  Google Scholar 

  34. Kaminsky, N., O. Bihari, S. Kanner, and A. Barzilai. 2016. Connecting malfunctioning glial cells and brain degenerative disorders. Genomics, Proteomics & Bioinformatics 14: 155–165.

    Google Scholar 

  35. Bertholet, A.M., T. Delerue, A.M. Millet, M.F. Moulis, C. David, M. Daloyau, L. Arnauné-Pelloquin, N. Davezac, V. Mils, M.C. Miquel, M. Rojo, and P. Belenguer. 2016. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiology of Disease 90: 3–19.

    PubMed  CAS  Google Scholar 

  36. Lu, B. 2009. Mitochondrial dynamics and neurodegeneration. Current Neurology and Neuroscience Reports 9: 212–219.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Katoh, M., B. Wu, H.B. Nguyen, T.Q. Thai, R. Yamasaki, H. Lu, et al. 2017. Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation. Scientific Reports 7: 4942.

    PubMed  PubMed Central  Google Scholar 

  38. Link, P., and M. Wink. 2019. Isoliquiritigenin exerts antioxidant activity in Caenorhabditis elegans via insulin-like signaling pathway and SKN-1. Phytomedicine 55: 119–124.

    PubMed  CAS  Google Scholar 

  39. Peng, F., Q. Du, C. Peng, N. Wang, H. Tang, X. Xie, et al. 2015. A review: the pharmacology of Isoliquiritigenin. Phytotherapy Research 29: 969–977.

    PubMed  CAS  Google Scholar 

  40. Zhou, J.X., and Wink, M. 2019. Evidence for anti-Inflammatory activity of isoliquiritigenin, 18beta glycyrrhetinic acid, ursolic acid, and the traditional Chinese medicine plants Glycyrrhiza glabra and Eriobotrya japonica, at the molecular level. Medicines (Basel) 6(2): 5.

  41. Chen, C., A.K. Shenoy, R. Padia, D. Fang, Q. Jing, P. Yang, S.B. Su, and S. Huang. 2018. Suppression of lung cancer progression by isoliquiritigenin through its metabolite 2, 4, 2′, 4'-Tetrahydroxychalcone. Journal of Experimental & Clinical Cancer Research 37: 243.

    Google Scholar 

  42. Honda, H., Y. Nagai, T. Matsunaga, N. Okamoto, Y. Watanabe, K. Tsuneyama, H. Hayashi, I. Fujii, M. Ikutani, Y. Hirai, A. Muraguchi, and K. Takatsu. 2014. Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. Journal of Leukocyte Biology 96: 1087–1100.

    PubMed  Google Scholar 

  43. Lee, S.H., J.Y. Kim, G.S. Seo, Y.C. Kim, and D.H. Sohn. 2009. Isoliquiritigenin, from Dalbergia odorifera, up-regulates anti-inflammatory heme oxygenase-1 expression in RAW264.7 macrophages. Inflammation Research 58: 257–262.

    PubMed  CAS  Google Scholar 

  44. Zhang, M., Y. Wu, L. Xie, C.H. Teng, F.F. Wu, K.B. Xu, X. Chen, J. Xiao, H.Y. Zhang, and D.Q. Chen. 2019. Corrigendum to “Isoliquiritigenin protects against blood-brain barrier damage and inhibits the secretion of pro-inflammatory cytokines in mice after traumatic brain injury” [International Immunopharmacology 65(2018) 64–75]. International Immunopharmacology 67: 490.

    PubMed  CAS  Google Scholar 

  45. Ge, J., C. Wang, X. Nie, J. Yang, H. Lu, X. Song, K. Su, T. Li, J. Han, Y. Zhang, J. Mao, Y. Gu, J. Zhao, S. Jiang, and Q. Wu. 2016. ROS-mediated apoptosis of HAPI microglia through p53 signaling following PFOS exposure. Environmental Toxicology and Pharmacology 46: 9–16.

    PubMed  CAS  Google Scholar 

  46. Pawate, S., Q. Shen, F. Fan, and N.R. Bhat. 2004. Redox regulation of glial inflammatory response to lipopolysaccharide and interferon gamma. Journal of Neuroscience Research 77: 540–551.

    PubMed  CAS  Google Scholar 

  47. Torres, M. 2003. Mitogen-activated protein kinase pathways in redox signaling. Frontiers in Bioscience 8: d369–d391.

    PubMed  CAS  Google Scholar 

  48. Jezek, J., Cooper, K.F., and Strich, R. 2018. Reactive oxygen species and mitochondrial dynamics: the Yin and Yang of mitochondrial dysfunction and cancer progression. Antioxidants (Basel) 7(1): 13.

  49. Onodera, H., Y. Yamasaki, K. Kogure, and E. Miyamoto. 1995. Calcium/calmodulin-dependent protein kinase II and protein phosphatase 2B (calcineurin) immunoreactivity in the rat hippocampus long after ischemia. Brain Research 684: 95–98.

    PubMed  CAS  Google Scholar 

  50. Bandyopadhyay, J., J. Lee, J. Lee, J.I. Lee, J.R. Yu, C. Jee, J.H. Cho, S. Jung, M.H. Lee, S. Zannoni, A. Singson, D.H. Kim, H.S. Koo, and J. Ahnn. 2002. Calcineurin, a calcium/calmodulin-dependent protein phosphatase, is involved in movement, fertility, egg laying, and growth in Caenorhabditis elegans. Molecular Biology of the Cell 13: 3281–3293.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Tvrdik, P., and Kalani, M.Y.S. 2017. In vivo imaging of microglial calcium signaling in brain inflammation and injury. Int J Mol Sci 18(11): 2366.

  52. Lee, P., J. Lee, S. Kim, M.S. Lee, H. Yagita, S.Y. Kim, H. Kim, and K. Suk. 2001. NO as an autocrine mediator in the apoptosis of activated microglial cells: correlation between activation and apoptosis of microglial cells. Brain Research 892: 380–385.

    PubMed  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2020R1A2B5B01002563 and MSIT, NRF-2017R1A5A2015391) and the KRIBB Research Initiative Program (KGM4622013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Seok Lee.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.G., Nam, B.R., Huh, JW. et al. Isoliquiritigenin Reduces LPS-Induced Inflammation by Preventing Mitochondrial Fission in BV-2 Microglial Cells. Inflammation 44, 714–724 (2021). https://doi.org/10.1007/s10753-020-01370-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01370-2

KEY WORDS

Navigation