Skip to main content

Advertisement

Log in

Impaired Wnt Signaling in the Prefrontal Cortex of Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Wnt pathway is involved in synaptic plasticity and neuronal survival, and alterations in Wnt signaling have previously been reported both in aging and neurodegenerative diseases, including Alzheimer’s disease (AD). This study sought to evaluate Wnt signaling pathway interplay integrity across prefrontal lobe structures in AD patients compared to normal aging. Using the open-access BrainCloud™ database, 84 gene expression profiles and clustering effect were analyzed in the dorsomedial prefrontal cortex (PFC) across a time span of 21–78 years of age. Next, expression levels of the selected genes were investigated in post-mortem brain tissue from 30 AD patients and 30 age-matched controls in three interdependent brain areas of the PFC. Results were assessed in relation to Braak stage and cognitive impairment of the patients. We found a general age-related factor in Wnt pathway genes with a group of genes being closely interrelated in their expression across the time span investigated in healthy individuals. This interrelation was altered in the AD brains studied, as several genes presented aberrant transcription, even though not always being altered at protein levels. Noteworthy, beta(β)-catenin and glycogen synthase kinase 3-beta (GSK3β) showed a dynamic switch in protein levels and activity, especially in the orbitofrontal cortex and the medial frontal gyrus. A significant decrease in β-catenin protein levels were inversely associated with increased GSK3β tyrosine activating phosphorylation, in addition to downstream effects associated with disease progression and cognitive decline. This study is the first that comprehensively evaluates Wnt signaling pathway in the prefrontal cortical lobe structures of AD brains, in relation to age-related coordinated Wnt signaling changes. Our findings further support that increased kinase activity of GSK3β is associated with AD pathology in the PFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AD :

Alzheimer’s disease patients

PFC :

prefrontal cortex

CNS :

central nervous system

M :

male

F :

female

NCBI :

National Center for Biotechnology

OFC :

orbitofrontal cortex

MFG :

medial frontal gyrus

SFG :

superior frontal gyrus

PMI :

post-mortem interval

RT-qPCR :

reverse transcription quantitative real-time polymerase chain reaction

MIQE :

the minimum information for publication of quantitative real-time experiments

RIN :

RNA integrity number

ND :

non-demented controls

FC :

fold-change

kDa :

kilodalton

p:

phosphorylation

Ser :

serine

Tyr :

tyrosine

MMSE :

Mini-Mental State Examination

References

  1. Mayeux R, Stern Y (2012) Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2(8). https://doi.org/10.1101/cshperspect.a006239

    Article  PubMed  PubMed Central  Google Scholar 

  2. Simic G, Kostovic I, Winblad B, Bogdanovic N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379:482–494. https://doi.org/10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  3. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/BF00308809

    Article  CAS  PubMed  Google Scholar 

  4. Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4:2757–2763. https://doi.org/10.1002/j.1460-2075.1985.tb04000.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lindsay J, Laurin D, Verreault R, Hébert R, Helliwell B, Hill GB, McDowell I (2002) Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156:445–453. https://doi.org/10.1093/aje/kwf074

    Article  PubMed  Google Scholar 

  6. Launer LJ, Andersen K, Dewey ME, Letenneur L, Ott A, Amaducci LA, Brayne C, Copeland JRM et al (1999) Rates and risk factors for dementia and Alzheimer’s disease: results from EURODEM pooled analyses. EURODEM Incidence Research Group and Work Groups European Studies of Dementia. Neurology 52:78–84. https://doi.org/10.1212/WNL.52.1.78

    Article  CAS  PubMed  Google Scholar 

  7. Rubin EH, Morris JC, Storandt M, Berg L (1987) Behavioral changes in patients with mild senile dementia of the Alzheimer’s type. Psychiatry Res 21:55–62. https://doi.org/10.1016/0165-1781(87)90062-x

    Article  CAS  PubMed  Google Scholar 

  8. Petry S (1989) Personality alterations in dementia of the Alzheimer type: a three-year follow-up study personality. J Geriatr Psyctiatry Neurol 2:203–207. https://doi.org/10.1177/089198878900200406

    Article  CAS  Google Scholar 

  9. Siddiqui SV, Chatterjee U, Kumar D et al (2008) Neuropsychology of prefrontal cortex. Indian J Psychiatry 50:202–208. https://doi.org/10.4103/0019-5545.43634

    Article  PubMed  PubMed Central  Google Scholar 

  10. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810. https://doi.org/10.1146/annurev.cellbio.20.010403.113126

    Article  CAS  PubMed  Google Scholar 

  11. Cadigan KM, Nusse R (1997) Wnt signalling: a common theme in animal development. Genes Dev 11:3286–3305. https://doi.org/10.1101/gad.11.24.3286

    Article  CAS  PubMed  Google Scholar 

  12. Mikels AJ, Nusse R (2006) Wnts as ligands: processing, secretion and reception. Oncogene 25:7461–7468. https://doi.org/10.1038/sj.onc.1210053

    Article  CAS  PubMed  Google Scholar 

  13. Inestrosa NC, Varela-Nallar L (2014) Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol 6:64–74. https://doi.org/10.1093/jmcb/mjt051

    Article  PubMed  Google Scholar 

  14. Budnik V, Salinas PC (2011) Wnt signaling during synaptic development and plasticity. Curr Opin Neurobiol 21:151–159. https://doi.org/10.1016/j.conb.2010.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ille F, Sommer L (2005) Wnt signaling: multiple functions in neural development. Cell Mol Life Sci 62:1100–1108. https://doi.org/10.1007/s00018-00

    Article  CAS  PubMed  Google Scholar 

  16. Shimogori T, Van Sant J, Paik E, Grove EA (2004) Members of the Wnt, Fz, and Frp gene families expressed in postnatal mouse cerebral cortex. J Comp Neurol 473:496–510. https://doi.org/10.1002/cne.20135

    Article  CAS  PubMed  Google Scholar 

  17. De Ferrari GV, Moon RT (2006) The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene 25:7545–7553. https://doi.org/10.1038/sj.onc.1210064

    Article  CAS  PubMed  Google Scholar 

  18. Marchand A, Atassi F, Gaaya A, Leprince P, le Feuvre C, Soubrier F, Lompré AM, Nadaud S (2011) The Wnt/beta-catenin pathway is activated during advanced arterial aging in humans. Aging Cell 10:220–232. https://doi.org/10.1111/j.1474-9726.2010.00661.x

    Article  CAS  PubMed  Google Scholar 

  19. Farr JN, Roforth MM, Fujita K, Nicks KM, Cunningham JM, Atkinson EJ, Therneau TM, McCready LK et al (2015) Effects of age and estrogen on skeletal gene expression in humans as assessed by RNA sequencing. PLoS One 10:1–22. https://doi.org/10.1371/journal.pone.0138347

    Article  CAS  Google Scholar 

  20. Jessberger S, Clark RE, Broadbent NJ, Clemenson GD, Consiglio A, Lie DC, Squire LR, Gage FH (2009) Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn Mem 16:147–154. https://doi.org/10.1101/lm.1172609

    Article  PubMed  PubMed Central  Google Scholar 

  21. Karasik D, Rivadeneira F, Johnson ML (2016) The genetics of bone mass and susceptibility to bone diseases. Nat Rev Rheumatol 12:323–334. https://doi.org/10.1038/nrrheum.2016.48

    Article  CAS  PubMed  Google Scholar 

  22. The Cancer Genome Atlas Network, Muzny DM, Bainbridge MN, et al (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337. https://doi.org/10.1038/nature11252.Comprehensive

    Article  Google Scholar 

  23. Berwick DC, Harvey K (2014) The regulation and deregulation of Wnt signaling by PARK genes in health and disease. J Mol Cell Biol 6:3–12. https://doi.org/10.1093/jmcb/mjt037

    Article  PubMed  Google Scholar 

  24. Caricasole A, Copani A, Caraci F, Aronica E, Rozemuller AJ, Caruso A, Storto M, Gaviraghi G et al (2004) Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J Neurosci 24:6021–6027. https://doi.org/10.1523/JNEUROSCI.1381-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439. https://doi.org/10.1111/j.1471-4159.2007.05194.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Z, Hartmann H, Minh Do V, Abramowski D, Sturchler-Pierrat C, Staufenbiel M, Sommer B, van de Wetering M et al (1998) Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395:698–702. https://doi.org/10.1038/27208

    Article  CAS  PubMed  Google Scholar 

  27. Leroy K, Yilmaz Z, Brion JP (2007) Increased level of active GSK-3beta in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol 33:43–55. https://doi.org/10.1111/j.1365-2990.2006.00795.x

    Article  CAS  PubMed  Google Scholar 

  28. Liu CC, Tsai CW, Deak F, Rogers J, Penuliar M, Sung YM, Maher JN, Fu Y et al (2014) Deficiency in LRP6-mediated Wnt signaling contributes to synaptic abnormalities and amyloid pathology in Alzheimer’s disease. Neuron 84:63–77. https://doi.org/10.1016/j.neuron.2014.08.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Riise J, Plath N, Pakkenberg B, Parachikova A (2015) Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer’s disease. J Neural Transm 122(9):1303–1318. https://doi.org/10.1007/s00702-015-1375-7

    Article  CAS  PubMed  Google Scholar 

  30. Zenzmaier C, Marksteiner J, Kiefer A, Berger P, Humpel C (2009) Dkk-3 is elevated in CSF and plasma of Alzheimer’s disease patients. J Neurochem 110:653–661. https://doi.org/10.1111/j.1471-4159.2009.06158.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alarcón MA, Medina MA, Hu Q et al (2013) A novel functional low-density lipoprotein receptor-related protein 6 gene alternative splice variant is associated with Alzheimer’s disease. Neurobiol Aging 34:1709.e9–1709.e18. https://doi.org/10.1016/j.neurobiolaging.2012.11.004

    Article  CAS  Google Scholar 

  32. De Ferrari GV, Papassotiropoulos A, Biechele T et al (2007) Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer’s disease. Proc Natl Acad Sci U S A 104:9434–9439. https://doi.org/10.1073/pnas.0603523104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De Sarno P, Li X, Jope RS (2002) Regulation of Akt and glycogen synthase kinase-3β phosphorylation by sodium valproate and lithium. Neuropharmacology 43:1158–1164. https://doi.org/10.1016/S0028-3908(02)00215-0

    Article  PubMed  Google Scholar 

  34. Bhat RV, Shanley J, Correll MP, Fieles WE, Keith RA, Scott CW, Lee CM (2000) Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci U S A 97:11074–11079. https://doi.org/10.1073/pnas.190297597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma T (2014) GSK3 in Alzheimer’s disease: mind the isoforms. J Alzheimers Dis 39:707–710. https://doi.org/10.3233/JAD-131661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen M, Do H (2012) Wnt signaling in neurogenesis during aging and physical activity. Brain Sci 2:745–768. https://doi.org/10.3390/brainsci2040745

    Article  PubMed  PubMed Central  Google Scholar 

  37. García-Velázquez L, Arias C (2017) The emerging role of Wnt signaling dysregulation in the understanding and modification of age-associated diseases. Ageing Res Rev 37:135–145. https://doi.org/10.1016/j.arr.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  38. Vallée A, Lecarpentier Y (2016) Alzheimer disease: crosstalk between the canonical Wnt/beta-catenin pathway and PPARs alpha and gamma. Front Neurosci 10:1–12. https://doi.org/10.3389/fnins.2016.00459

    Article  Google Scholar 

  39. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT, Colantuoni EA, Elkahloun AG et al (2011) Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478:519–523. https://doi.org/10.1038/nature10524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde—in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig, Leipzig

    Google Scholar 

  41. Liang WS, Dunckley T, Beach TG, Grover A, Mastroeni D, Ramsey K, Caselli RJ, Kukull WA et al (2008) Altered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: a reference data set. Physiol 33:240–256. https://doi.org/10.1152/physiolgenomics.00242.2007

    Article  CAS  Google Scholar 

  42. Podtelezhnikov AA, Tanis KQ, Nebozhyn M, Ray WJ, Stone DJ, Loboda AP (2011) Molecular insights into the pathogenesis of Alzheimer’s disease and its relationship to normal aging. PLoS One 6(12):e29610. https://doi.org/10.1371/journal.pone.0029610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Humphries CE, Kohli MA, Nathanson L, Whitehead P, Beecham G, Martin E, Mash DC, Pericak-Vance MA et al (2015) Integrated whole transcriptome and DNA methylation analysis identifies gene networks specific to late-onset Alzheimer’s disease. J Alzheimers Dis 44:977–987. https://doi.org/10.3233/JAD-141989

    Article  CAS  PubMed  Google Scholar 

  44. Davis EK, Zou Y, Ghosh A (2008) Wnts acting through canonical and noncanonical signaling pathways exert opposite effects on hippocampal synapse formation. Neural Dev 3:32. https://doi.org/10.1186/1749-8104-3-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rex CS, Chen LY, Sharma A, Liu J, Babayan AH, Gall CM, Lynch G (2009) Different rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J Cell Biol 186:85–97. https://doi.org/10.1083/jcb.200901084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huesa G, Baltrons MA, Gómez-Ramos P, Morán A, García A, Hidalgo J, Francés S, Santpere G et al (2010) Altered distribution of RhoA in Alzheimer’s disease and AβPP overexpressing mice. J Alzheimers Dis 19:37–56. https://doi.org/10.3233/JAD-2010-1203

    Article  CAS  PubMed  Google Scholar 

  47. Zhang L, Bahety P, Ee PLR (2015) Wnt co-receptor LRP5/6 overexpression confers protection against hydrogen peroxide-induced neurotoxicity and reduces tau phosphorylation in SH-SY5Y cells. Neurochem Int 87:13–21. https://doi.org/10.1016/j.neuint.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  48. Shankar G, Walsh D (2009) Alzheimer’s disease: synaptic dysfunction and Aβ. Mol Neurodegener 4:1–13. https://doi.org/10.1186/1750-1326-4-48

    Article  CAS  Google Scholar 

  49. Killick R, Ribe EM, Al-Shawi R et al (2014) Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway. Mol Psychiatry 19:88–98. https://doi.org/10.1038/mp.2012.163

    Article  CAS  PubMed  Google Scholar 

  50. Purro SA, Dickins EM, Salinas PC (2012) The secreted Wnt antagonist Dickkopf-1 is required for amyloid -mediated synaptic loss. J Neurosci 32:3492–3498. https://doi.org/10.1523/JNEUROSCI.4562-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang X, Yin WK, Shi XD, Li Y (2011) Curcumin activates Wnt/β-catenin signaling pathway through inhibiting the activity of GSK-3β in APPswe transfected SY5Y cells. Eur J Pharm Sci 42:540–546. https://doi.org/10.1016/j.ejps.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  52. Rosi MC, Luccarini I, Grossi C, Fiorentini A, Spillantini MG, Prisco A, Scali C, Gianfriddo M et al (2010) Increased Dickkopf-1 expression in transgenic mouse models of neurodegenerative disease. J Neurochem 112:1539–1551. https://doi.org/10.1111/j.1471-4159.2009.06566.x

    Article  CAS  PubMed  Google Scholar 

  53. Takashima A, Noguchi K, Michel G, Mercken M, Hoshi M, Ishiguro K, Imahori K (1996) Exposure of rat hippocampal neurons to amyloid-beta peptide (25-35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3beta. Neurosci Lett 203:33–36. https://doi.org/10.1016/0304-3940(95)12257-5

    Article  CAS  PubMed  Google Scholar 

  54. Takashima A, Honda T, Yasutake K, Michel G, Murayama O, Murayama M, Ishiguro K, Yamaguchi H (1998) Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid-beta peptide (25-35) enhances phosphorylation of tau in hippocampal neurons. Neurosci Res 31:317–323. https://doi.org/10.1016/S0168-0102(98)00061-3

    Article  CAS  PubMed  Google Scholar 

  55. Parr C, Mirzaei N, Christian M, Sastre M (2015) Activation of the Wnt/β-catenin pathway represses the transcription of the β-amyloid precursor protein cleaving enzyme (BACE1) via binding of T-cell factor-4 to BACE1 promoter. FASEB J 29:623–635. https://doi.org/10.1096/fj.14-253211

    Article  CAS  PubMed  Google Scholar 

  56. Ríos JA, Godoy JA, Inestrosa NC (2018) Wnt3a ligand facilitates autophagy in hippocampal neurons by modulating a novel GSK-3 β -AMPK axis. Cell Commun Signal 16:15. https://doi.org/10.1186/s12964-018-0227-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Toledo EM, Inestrosa NC (2010) Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1ΔE9 mouse model of Alzheimer’s disease. Mol Psychiatry 15:272–285. https://doi.org/10.1038/mp.2009.72

    Article  CAS  PubMed  Google Scholar 

  58. Tapia-Rojas C, Inestrosa NC (2018) Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer’s disease in J20-APP transgenic and wild-type mice. J Neurochem 144:443–465. https://doi.org/10.1111/jnc.14278

    Article  CAS  PubMed  Google Scholar 

  59. Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF (1999) Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 58:1010–1019. https://doi.org/10.1097/00005072-199909000-00011

    Article  CAS  PubMed  Google Scholar 

  60. Patel P, Woodgett JR (2017) Glycogen synthase kinase 3: a kinase for all pathways? Curr Top Dev Biol 123:277–302. https://doi.org/10.1016/bs.ctdb.2016.11.011

    Article  PubMed  Google Scholar 

  61. Fang X, Yu SX, Lu Y, Bast RC, Woodgett JR, Mills GB (2000) Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A 97:11960–11965. https://doi.org/10.1073/pnas.220413597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hino S, Tanji C, Nakayama KI, Kikuchi A (2005) Phosphorylation of β-catenin by cyclic AMP-dependent protein kinase stabilizes β-catenin through inhibition of its ubiquitination. Mol Cell Biol 25:9063–9072. https://doi.org/10.1128/MCB.25.20.9063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Park MH, Kim DJ, You ST, Lee CS, Kim HK, Park SM, Shin EY, Kim EG (2012) Phosphorylation of β-catenin at serine 663 regulates its transcriptional activity. Biochem Biophys Res Commun 419:543–549. https://doi.org/10.1016/j.bbrc.2012.02.056

    Article  CAS  PubMed  Google Scholar 

  64. Yamaguchi H, Ishiguro K, Uchida T, Takashima A, Lemere CA, Imahori K (1996) Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3 beta and cyclin-dependent kinase 5, a component of TPK II. Acta Neuropathol 92:232–241. https://doi.org/10.1007/s004010050513

    Article  CAS  PubMed  Google Scholar 

  65. Ly PTT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, Zhang M, Yang Y et al (2013) Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest 123:224–235. https://doi.org/10.1172/JCI64516.224

    Article  CAS  PubMed  Google Scholar 

  66. Cedazo-Mínguez A, Popescu BO, Blanco-Millán JM, Akterin S, Pei JJ, Winblad B, Cowburn RF (2003) Apolipoprotein E and beta-amyloid (1–42) regulation of glycogen synthase kinase-3beta. J Neurochem 87:1152–1164. https://doi.org/10.1046/j.1471-4159.2003.02088.x

    Article  CAS  PubMed  Google Scholar 

  67. Hoshi M, Takashima A, Noguchi K, Murayama M, Sato M, Kondo S, Saitoh Y, Ishiguro K et al (1996) Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proc Natl Acad Sci U S A 93:2719–2723. https://doi.org/10.1073/pnas.93.7.2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. De Sarno P, Bijur GN, Zmijewska AA et al (2006) In vivo regulation of GSK3 phosphorylation by cholinergic and NMDA receptors. Neurobiol Aging 27:413–422. https://doi.org/10.1016/j.neurobiolaging.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  69. de Barreda EG, Pérez M, Ramos PG, de Cristobal J, Martín-Maestro P, Morán A, Dawson HN, Vitek MP et al (2010) Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. Neurobiol Dis 37:622–629. https://doi.org/10.1016/j.nbd.2009.11.017

    Article  CAS  Google Scholar 

  70. Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2003) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A 101:2173–2178. https://doi.org/10.1073/pnas.0308512100

    Article  CAS  Google Scholar 

  71. Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF (2011) Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br J Psychiatry 198:351–356. https://doi.org/10.1192/bjp.bp.110.080044

    Article  PubMed  Google Scholar 

  72. Mckhann G, Drachman D, Folstein M, Katzman R (1984) Clinical diagnosis of Alzheimer’s disease. View Rev 34:939–944. https://doi.org/10.1212/WNL.34.7.939

    Article  CAS  Google Scholar 

  73. Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746. https://doi.org/10.1016/S1474-4422(07)70178-3

    Article  PubMed  Google Scholar 

  74. Rydbirk R, Folke J, Winge K, Aznar S, Pakkenberg B, Brudek T (2016) Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases. Sci Rep 6:37116. https://doi.org/10.1038/srep37116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  76. Weis S, Llenos IC, Dulay JR, Elashoff M, Martínez-Murillo F, Miller CL (2007) Quality control for microarray analysis of human brain samples: the impact of postmortem factors, RNA characteristics, and histopathology. J Neurosci Methods 165:198–209. https://doi.org/10.1016/j.jneumeth.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  77. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  78. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–11. https://doi.org/10.1186/gb-2002-3-7-research0034

    Article  Google Scholar 

  79. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets normalization of real-time quantitative reverse. Cancer Res 64:5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  80. Pfaffl MW (2004) Relative quantification. Real-time PCR 3:63–82. https://doi.org/10.1186/1756-6614-3-5

    Article  CAS  Google Scholar 

  81. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33. https://doi.org/10.1186/1471-2199-7-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hellemans J, Mortier G, De Paepe A et al (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19. https://doi.org/10.1186/gb-2007-8-2-r19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Taylor SC, Posch A (2014) The design of a quantitative western blot experiment. Biomed Res Int 2014:361590–361598. https://doi.org/10.1155/2014/361590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Hans-Jørgen Jensen and Rasmus Rydbirk for technical assistance.

Availability of Data and Materials

The data analyzed during the current study is available from the corresponding author on reasonable request.

Funding

This work was supported by the Dagmar Marshalls Foundation and Familien Hede Nielsens Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.F. helped design the study, performed the experiments, analyzed and interpreted the data, and wrote the manuscript. T.B. designed the study, supervised the study and assisted with experimental design, data interpretation, and manuscript preparation. B.P supervised the project and assisted with manuscript preparations. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jonas Folke.

Ethics declarations

Ethics Approval

The Ethics Committee for the Copenhagen Regional Area approved this study (H-16031730).

Conflict of Interests

The authors declare that there is no conflict of interest.

Electronic Supplementary Material

Additional file 1

Figures S1, S2, Tables S1, S2, and S3: Figure S1 presents non-significant RT-qPCR validation results. Figure S2 shows a schematic presentation of the western blot setup and workflow including calculations. Table S1 presents genes related to the Wnt signaling pathway included in the study, including their chromosomal location. Table S2 presents the primer date for each primer pair used in this study, including the PCR efficiency, R2, and acquisition temperatures. Table S3 presents the basic demographic of brain samples. Table S4 presents the correlation of genes with close chromosomal proximity during aging. (DOCX 708 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Folke, J., Pakkenberg, B. & Brudek, T. Impaired Wnt Signaling in the Prefrontal Cortex of Alzheimer’s Disease. Mol Neurobiol 56, 873–891 (2019). https://doi.org/10.1007/s12035-018-1103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1103-z

Keywords

Navigation