Skip to main content

Advertisement

Log in

Improved Reperfusion and Vasculoprotection by the Poly(ADP-Ribose)Polymerase Inhibitor PJ34 After Stroke and Thrombolysis in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Benefits from thrombolysis with recombinant tissue plasminogen activator (rt-PA) after ischemic stroke remain limited due to a narrow therapeutic window, low reperfusion rates, and increased risk of hemorrhagic transformations (HT). Experimental data showed that rt-PA enhances the post-ischemic activation of poly(ADP-ribose)polymerase (PARP) which in turn contributes to blood-brain barrier injury. The aim of the present study was to evaluate whether PJ34, a potent PARP inhibitor, improves poor reperfusion induced by delayed rt-PA administration, exerts vasculoprotective effects, and finally increases the therapeutic window of rt-PA. Stroke was induced by thrombin injection (0.75 UI in 1 μl) in the left middle cerebral artery (MCA) of male Swiss mice. Administration of rt-PA (0.9 mg kg−1) or saline was delayed for 4 h after ischemia onset. Saline or PJ34 (3 mg kg−1) was given intraperitoneally twice, just after thrombin injection and 3 h later, or once, 3 h after ischemia onset. Reperfusion was evaluated by laser Doppler, vascular inflammation by immunohistochemistry of vascular cell adhesion molecule-1 (VCAM-1) expression, and vasospasm by morphometric measurement of the MCA. Edema, cortical lesion, and sensorimotor deficit were evaluated. Treatment with PJ34 improved rt-PA-induced reperfusion and promoted vascular protection including reduction in vascular inflammation (decrease in VCAM-1 expression), HT, and MCA vasospasm. Additionally, the combined treatment significantly reduced brain edema, cortical lesion, and sensorimotor deficit. In conclusion, the combination of the PARP inhibitor PJ34 with rt-PA after cerebral ischemia may be of particular interest in order to improve thrombolysis with an extended therapeutic window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BBB:

Blood-brain barrier

CBF:

Cerebral blood flow

DAB:

3,3′-Diaminobenzidine tetrahydrochloride

MCA:

Middle cerebral artery

PARP:

Poly(ADP-ribose)polymerase

PJ34:

N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide hydrochloride

ROI:

Region of interest

rt-PA:

Recombinant tissue plasminogen activator

VCAM-1:

Vascular cell adhesion molecule-1

References

  1. Cronin CA (2010) Intravenous tissue plasminogen activator for stroke: a review of the ECASS III results in relation to prior clinical trials. J Emerg Med 38:99–105. https://doi.org/10.1016/j.jemermed.2009.08.004

    Article  PubMed  Google Scholar 

  2. Tsivgoulis G, Sharma VK, Mikulik R, Krogias C, Haršány M, Shahripour RB, Athanasiadis D, Teoh HL et al (2014) Intravenous thrombolysis for acute ischemic stroke occurring during hospitalization for transient ischemic attack. Int J Stroke 9:413–418. https://doi.org/10.1111/ijs.12125

    Article  PubMed  Google Scholar 

  3. El Amki M, Wegener S (2017) Improving cerebral blood flow after arterial recanalization: a novel therapeutic strategy in stroke. Int J Mol Sci 18. https://doi.org/10.3390/ijms18122669

  4. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR et al (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359:1317–1329. https://doi.org/10.1056/NEJMoa0804656

    Article  CAS  PubMed  Google Scholar 

  5. Sussman ES, Connolly ES (2013) Hemorrhagic transformation: a review of the rate of hemorrhage in the major clinical trials of acute ischemic stroke. Front Neurol 4:69. https://doi.org/10.3389/fneur.2013.00069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bürkle A, Virág L (2013) Poly(ADP-ribose): PARadigms and PARadoxes. Mol Asp Med 34:1046–1065. https://doi.org/10.1016/j.mam.2012.12.010

    Article  CAS  Google Scholar 

  7. Ray Chaudhuri A, Nussenzweig A (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18:610–621. https://doi.org/10.1038/nrm.2017.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haddad M, Beray-Berthat V, Coqueran B, Plotkine M, Marchand-Leroux C, Margaill I (2013) Combined therapy with PJ34, a poly(ADP-ribose)polymerase inhibitor, reduces tissue plasminogen activator-induced hemorrhagic transformations in cerebral ischemia in mice. Fundam Clin Pharmacol 27:393–401. https://doi.org/10.1111/j.1472-8206.2012.01036.x

    Article  CAS  PubMed  Google Scholar 

  9. Teng F, Beray-Berthat V, Coqueran B, Lesbats C, Kuntz M, Palmier B, Garraud M, Bedfert C et al (2013) Prevention of rt-PA induced blood-brain barrier component degradation by the poly(ADP-ribose)polymerase inhibitor PJ34 after ischemic stroke in mice. Exp Neurol 248:416–428. https://doi.org/10.1016/j.expneurol.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  10. Kim Y, Kim YS, Kim HY, Noh MY, Kim JY, Lee YJ, Kim J, Park J et al (2018) Early treatment with poly(ADP-ribose) polymerase-1 inhibitor (JPI-289) reduces infarct volume and improves long-term behavior in an animal model of ischemic stroke. Mol Neurobiol. https://doi.org/10.1007/s12035-018-0910-6

    Article  CAS  PubMed  Google Scholar 

  11. Matsuura S, Egi Y, Yuki S, Horikawa T, Satoh H, Akira T (2011) MP-124, a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor, ameliorates ischemic brain damage in a non-human primate model. Brain Res 1410:122–131. https://doi.org/10.1016/j.brainres.2011.05.069

    Article  CAS  PubMed  Google Scholar 

  12. Giansanti V, Donà F, Tillhon M, Scovassi AI (2010) PARP inhibitors: new tools to protect from inflammation. Biochem Pharmacol 80:1869–1877. https://doi.org/10.1016/j.bcp.2010.04.022

    Article  CAS  PubMed  Google Scholar 

  13. Haddad M, Rhinn H, Bloquel C, Coqueran B, Szabó C, Plotkine M, Scherman D, Margaill I (2006) Anti-inflammatory effects of PJ34, a poly(ADP-ribose) polymerase inhibitor, in transient focal cerebral ischemia in mice. Br J Pharmacol 149:23–30. https://doi.org/10.1038/sj.bjp.0706837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crome O, Doeppner TR, Schwarting S, Müller B, Bähr M, Weise J (2007) Enhanced poly(ADP-ribose) polymerase-1 activation contributes to recombinant tissue plasminogen activator-induced aggravation of ischemic brain injury in vivo. J Neurosci Res 85:1734–1743. https://doi.org/10.1002/jnr.21305

    Article  CAS  PubMed  Google Scholar 

  15. Kauppinen TM, Suh SW, Berman AE, Hamby AM, Swanson RA (2009) Inhibition of poly(ADP-ribose) polymerase suppresses inflammation and promotes recovery after ischemic injury. J Cereb Blood Flow Metab 29:820–829. https://doi.org/10.1038/jcbfm.2009.9

    Article  CAS  PubMed  Google Scholar 

  16. Moroni F, Cozzi A, Chiarugi A, Formentini L, Camaioni E, Pellegrini-Giampietro DE, Chen Y, Liang S et al (2012) Long-lasting neuroprotection and neurological improvement in stroke models with new, potent and brain permeable inhibitors of poly(ADP-ribose) polymerase. Br J Pharmacol 165:1487–1500. https://doi.org/10.1111/j.1476-5381.2011.01666.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Berger NA, Besson VC, Boulares AH, Bürkle A, Chiarugi A, Clark RS, Curtin NJ, Cuzzocrea S et al (2017) Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. Br J Pharmacol 175:192–222. https://doi.org/10.1111/bph.13748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. El Amki M, Lerouet D, Coqueran B et al (2012) Experimental modeling of recombinant tissue plasminogen activator effects after ischemic stroke. Exp Neurol 238:138–144. https://doi.org/10.1016/j.expneurol.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  19. Cossu G, Messerer M, Oddo M, Daniel RT (2014) To look beyond vasospasm in aneurysmal subarachnoid haemorrhage. Biomed Res Int 2014:628597. https://doi.org/10.1155/2014/628597

    Article  PubMed  PubMed Central  Google Scholar 

  20. Orset C, Macrez R, Young AR, Panthou D, Angles-Cano E, Maubert E, Agin V, Vivien D (2007) Mouse model of in situ thromboembolic stroke and reperfusion. Stroke 38:2771–2778. https://doi.org/10.1161/STROKEAHA.107.487520

    Article  PubMed  Google Scholar 

  21. Astrup J, Symon L, Branston NM, Lassen NA (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8:51–57

    Article  CAS  PubMed  Google Scholar 

  22. Haddad M, Beray-Berthat V, Coqueran B, Palmier B, Szabo C, Plotkine M, Margaill I (2008) Reduction of hemorrhagic transformation by PJ34, a poly(ADP-ribose)polymerase inhibitor, after permanent focal cerebral ischemia in mice. Eur J Pharmacol 588:52–57. https://doi.org/10.1016/j.ejphar.2008.04.013

    Article  CAS  PubMed  Google Scholar 

  23. Homsi S, Piaggio T, Croci N, Noble F, Plotkine M, Marchand-Leroux C, Jafarian-Tehrani M (2010) Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study. J Neurotrauma 27:911–921. https://doi.org/10.1089/neu.2009.1223

    Article  PubMed  Google Scholar 

  24. Paxinos G, Franklin KBJ (1997) The mouse brain in stereotaxic coordinates / George Paxinos, Keith B.J. Franklin. Academic, San Diego, Calif. ; London :

  25. Sabri M, Ai J, Macdonald RL (2011) Dissociation of vasospasm and secondary effects of experimental subarachnoid hemorrhage by clazosentan. Stroke 42:1454–1460. https://doi.org/10.1161/STROKEAHA.110.604728

    Article  CAS  PubMed  Google Scholar 

  26. Golanov EV, Reis DJ (1995) Contribution of cerebral edema to the neuronal salvage elicited by stimulation of cerebellar fastigial nucleus after occlusion of the middle cerebral artery in rat. J Cereb Blood Flow Metab 15:172–174. https://doi.org/10.1038/jcbfm.1995.19

    Article  CAS  PubMed  Google Scholar 

  27. Curtis MJ, Bond RA, Spina D, Ahluwalia A, Alexander SPA, Giembycz MA, Gilchrist A, Hoyer D et al (2015) Experimental design and analysis and their reporting: new guidance for publication in BJP. Br J Pharmacol 172:3461–3471. https://doi.org/10.1111/bph.12856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rubiera M, Alvarez-Sabín J, Ribo M et al (2005) Predictors of early arterial reocclusion after tissue plasminogen activator-induced recanalization in acute ischemic stroke. Stroke 36:1452–1456. https://doi.org/10.1161/01.STR.0000170711.43405.81

    Article  PubMed  Google Scholar 

  29. Bhatia R, Hill MD, Shobha N, Menon B, Bal S, Kochar P, Watson T, Goyal M et al (2010) Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke 41:2254–2258. https://doi.org/10.1161/STROKEAHA.110.592535

    Article  CAS  PubMed  Google Scholar 

  30. Meschia JF, Barrett KM, Brott TG (2013) Reperfusion therapy for acute ischemic stroke: how should we react to the Third Interventional Management of Stroke (IMS III) trial? Mayo Clin Proc 88:653–657. https://doi.org/10.1016/j.mayocp.2013.05.002

    Article  PubMed  Google Scholar 

  31. Alano CC, Kauppinen TM, Valls AV, Swanson RA (2006) Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentrations. Proc Natl Acad Sci U S A 103:9685–9690. https://doi.org/10.1073/pnas.0600554103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Machado LS, Sazonova IY, Kozak A, Wiley DC, el-Remessy AB, Ergul A, Hess DC, Waller JL et al (2009) Minocycline and tissue-type plasminogen activator for stroke: assessment of interaction potential. Stroke 40:3028–3033. https://doi.org/10.1161/STROKEAHA.109.556852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tóth O, Szabó C, Kecskés M, Pótó L, Nagy Á, Losonczy H (2006) In vitro effect of the potent poly(ADP-ribose) polymerase (PARP) inhibitor INO-1001 alone and in combination with aspirin, eptifibatide, tirofiban, enoxaparin or alteplase on haemostatic parameters. Life Sci 79:317–323. https://doi.org/10.1016/j.lfs.2006.01.007

    Article  CAS  PubMed  Google Scholar 

  34. Lechaftois M, Dreano E, Palmier B, Margaill I, Marchand-Leroux C, Bachelot-Loza C, Lerouet D (2014) Another “string to the bow” of PJ34, a potent poly(ADP-ribose)polymerase inhibitor: an antiplatelet effect through P2Y12 antagonism? PLoS One 9:e110776. https://doi.org/10.1371/journal.pone.0110776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pacher P, Szabó C (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 25:235–260. https://doi.org/10.1111/j.1527-3466.2007.00018.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kassan M, Choi S-K, Galán M et al (2013) Enhanced NF-κB activity impairs vascular function through PARP-1-, SP-1-, and COX-2-dependent mechanisms in type 2 diabetes. Diabetes 62:2078–2087. https://doi.org/10.2337/db12-1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gongol B, Marin T, Peng I-C, Woo B, Martin M, King S, Sun W, Johnson DA et al (2013) AMPKα2 exerts its anti-inflammatory effects through PARP-1 and Bcl-6. Proc Natl Acad Sci U S A 110:3161–3166. https://doi.org/10.1073/pnas.1222051110

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rom S, Zuluaga-Ramirez V, Dykstra H, Reichenbach NL, Ramirez SH, Persidsky Y (2015) Poly(ADP-ribose) polymerase-1 inhibition in brain endothelium protects the blood-brain barrier under physiologic and neuroinflammatory conditions. J Cereb Blood Flow Metab 35:28–36. https://doi.org/10.1038/jcbfm.2014.167

    Article  CAS  PubMed  Google Scholar 

  39. Frijns CJM, Kappelle LJ (2002) Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke 33:2115–2122

    Article  CAS  PubMed  Google Scholar 

  40. Gauberti M, Montagne A, Quenault A, Vivien D (2014) Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci 8:389. https://doi.org/10.3389/fncel.2014.00389

    Article  PubMed  PubMed Central  Google Scholar 

  41. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM (1994) Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25:1794–1798

    Article  CAS  PubMed  Google Scholar 

  42. Castillo J, Alvarez-Sabín J, Martínez-Vila E et al (2009) Inflammation markers and prediction of post-stroke vascular disease recurrence: the MITICO study. J Neurol 256:217–224. https://doi.org/10.1007/s00415-009-0058-4

    Article  CAS  PubMed  Google Scholar 

  43. Lenglet S, Montecucco F, Denes A, Coutts G, Pinteaux E, Mach F, Schaller K, Gasche Y et al (2014) Recombinant tissue plasminogen activator enhances microglial cell recruitment after stroke in mice. J Cereb Blood Flow Metab 34:802–812. https://doi.org/10.1038/jcbfm.2014.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liesz A, Zhou W, Mracskó É, Karcher S, Bauer H, Schwarting S, Sun L, Bruder D et al (2011) Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain 134:704–720. https://doi.org/10.1093/brain/awr008

    Article  PubMed  Google Scholar 

  45. Blum A, Khazim K, Merei M, Peleg A, Blum N, Vaispapir V (2006) The stroke trial—can we predict clinical outcome of patients with ischemic stroke by measuring soluble cell adhesion molecules (CAM)? Eur Cytokine Netw 17:295–298

    CAS  PubMed  Google Scholar 

  46. Palomares SM, Cipolla MJ (2011) Vascular protection following cerebral ischemia and reperfusion. J Neurol Neurophysiol 2011

  47. Edvinsson LIH, Povlsen GK (2011) Vascular plasticity in cerebrovascular disorders. J Cereb Blood Flow Metab 31:1554–1571. https://doi.org/10.1038/jcbfm.2011.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cipolla MJ, Lessov N, Clark WM, Haley EC (2000) Postischemic attenuation of cerebral artery reactivity is increased in the presence of tissue plasminogen activator. Stroke 31:940–945

    Article  CAS  PubMed  Google Scholar 

  49. Armstead WM, Cines DB, Higazi AA-R (2005) Plasminogen activators contribute to impairment of hypercapnic and hypotensive cerebrovasodilation after cerebral hypoxia/ischemia in the newborn pig. Stroke 36:2265–2269. https://doi.org/10.1161/01.STR.0000181078.74698.b0

    Article  CAS  PubMed  Google Scholar 

  50. Jagtap P, Szabó C (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4:421–440. https://doi.org/10.1038/nrd1718

    Article  CAS  PubMed  Google Scholar 

  51. Zhou T-B, Jiang Z-P (2014) Role of poly (ADP-ribose)-polymerase and its signaling pathway with renin-angiotensin aldosterone system in renal diseases. J Recept Signal Transduct Res 34:143–148. https://doi.org/10.3109/10799893.2013.865748

    Article  CAS  PubMed  Google Scholar 

  52. Satoh M, Date I, Nakajima M, Takahashi K, Iseda K, Tamiya T, Ohmoto T, Ninomiya Y et al (2001) Inhibition of poly(ADP-ribose) polymerase attenuates cerebral vasospasm after subarachnoid hemorrhage in rabbits. Stroke 32:225–231

    Article  CAS  PubMed  Google Scholar 

  53. English FA, McCarthy FP, Andersson IJ et al (2012) Administration of the PARP inhibitor Pj34 ameliorates the impaired vascular function associated with eNOS(−/−) mice. Reprod Sci 19:806–813. https://doi.org/10.1177/1933719111433885

    Article  CAS  PubMed  Google Scholar 

  54. Choi S-K, Galán M, Kassan M et al (2012) Poly(ADP-ribose) polymerase 1 inhibition improves coronary arteriole function in type 2 diabetes mellitus. Hypertension 59:1060–1068. https://doi.org/10.1161/HYPERTENSIONAHA.111.190140

    Article  CAS  PubMed  Google Scholar 

  55. Lenzsér G, Kis B, Snipes JA, Gáspár T, Sándor P, Komjáti K, Szabó C, Busija DW (2007) Contribution of poly(ADP-ribose) polymerase to postischemic blood-brain barrier damage in rats. J Cereb Blood Flow Metab 27:1318–1326. https://doi.org/10.1038/sj.jcbfm.9600437

    Article  CAS  PubMed  Google Scholar 

  56. Sekhon LH, Spence I, Morgan MK, Weber NC (1995) Chronic cerebral hypoperfusion in the rat: temporal delineation of effects and the in vitro ischemic threshold. Brain Res 704:107–111

    Article  CAS  PubMed  Google Scholar 

  57. Ishiguro M, Kawasaki K, Suzuki Y, Ishizuka F, Mishiro K, Egashira Y, Ikegaki I, Tsuruma K et al (2012) A Rho kinase (ROCK) inhibitor, fasudil, prevents matrix metalloproteinase-9-related hemorrhagic transformation in mice treated with tissue plasminogen activator. Neuroscience 220:302–312. https://doi.org/10.1016/j.neuroscience.2012.06.015

    Article  CAS  PubMed  Google Scholar 

  58. Mishiro K, Ishiguro M, Suzuki Y, Tsuruma K, Shimazawa M, Hara H (2012) A broad-spectrum matrix metalloproteinase inhibitor prevents hemorrhagic complications induced by tissue plasminogen activator in mice. Neuroscience 205:39–48. https://doi.org/10.1016/j.neuroscience.2011.12.042

    Article  CAS  PubMed  Google Scholar 

  59. Sehouli J, Braicu EI, Chekerov R (2016) PARP inhibitors for recurrent ovarian carcinoma: current treatment options and future perspectives. Geburtshilfe Frauenheilkd 76:164–169. https://doi.org/10.1055/s-0035-1558185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dockery L, Gunderson C, Moore K (2017) Rucaparib: the past, present, and future of a newly approved PARP inhibitor for ovarian cancer. Onco Targets Ther 10:3029–3037. https://doi.org/10.2147/OTT.S114714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

M. El-Amki and. M. Garraud are recipients of a Ph.D. grant from the Université Paris Descartes, Université Sorbonne Paris Cité.

Author information

Authors and Affiliations

Authors

Contributions

DL, MEA, and IM conceived and designed the experiments. MEA, MG, BB, and CA performed the experiments. MEA, DL, BP, and BC analyzed the data. MEA, DL, VBB, CML, and IM wrote the manuscript.

Corresponding author

Correspondence to Isabelle Margaill.

Ethics declarations

All experiments were performed on male Swiss albino mice (25–32 g, Janvier, Le Genest-St-Isle, France) in compliance with the European Community Council Directive of September 22, 2010 (2010/63/UE), and the French regulations regarding the protection of animals used for experimental and other scientific purposes (D2013-118), with the ethical approval of the Paris Descartes University Animal Ethics Committee (registered number P2.CM.152.10).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Amki, M., Lerouet, D., Garraud, M. et al. Improved Reperfusion and Vasculoprotection by the Poly(ADP-Ribose)Polymerase Inhibitor PJ34 After Stroke and Thrombolysis in Mice. Mol Neurobiol 55, 9156–9168 (2018). https://doi.org/10.1007/s12035-018-1063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1063-3

Keywords

Navigation